LightningIRConfig
- class lightning_ir.base.config.LightningIRConfig(*args, query_length: int | None = 32, doc_length: int | None = 512, use_adapter: bool = False, adapter_config: 'LoraConfig' | None = None, pretrained_adapter_name_or_path: str | None = None, **kwargs)[source]
Bases:
PretrainedConfigThe configuration class to instantiate a Lightning IR model. Acts as a mixin for the transformers.PretrainedConfig class.
- __init__(*args, query_length: int | None = 32, doc_length: int | None = 512, use_adapter: bool = False, adapter_config: 'LoraConfig' | None = None, pretrained_adapter_name_or_path: str | None = None, **kwargs)[source]
Initializes the configuration.
- Parameters:
query_length (int | None) – Maximum number of tokens per query. If None does not truncate. Defaults to 32.
doc_length (int | None) – Maximum number of tokens per document. If None does not truncate. Defaults to 512.
use_adapter (bool, optional) – Whether to use LoRA adapters. Defaults to False.
adapter_config (Optional[LoraConfig], optional) – Configuration for LoRA adapters. Only used if use_adapter is True. Defaults to None.
pretrained_adapter_name_or_path (Optional[str], optional) – The path to a pretrained adapter to load. Defaults to None.
Methods
__init__(*args[, query_length, doc_length, ...])Initializes the configuration.
from_pretrained(...)Loads the configuration from a pretrained model.
get_tokenizer_kwargs(Tokenizer)Returns the keyword arguments for the tokenizer.
to_dict()Overrides the transformers.PretrainedConfig.to_dict method to include the added arguments and the backbone model type.
Attributes
Backbone model type for the configuration.
Model type for the configuration.
- backbone_model_type: str | None = None
Backbone model type for the configuration. Set by
LightningIRModelClassFactory().
- classmethod from_pretrained(pretrained_model_name_or_path: str | Path, *args, **kwargs) LightningIRConfig[source]
Loads the configuration from a pretrained model. Wraps the transformers.PretrainedConfig.from_pretrained
- Parameters:
pretrained_model_name_or_path (str | Path) – Pretrained model name or path.
- Returns:
Derived LightningIRConfig class.
- Return type:
- Raises:
ValueError – If pretrained_model_name_or_path is not a Lightning IR model and no
LightningIRConfigis passed.
- get_tokenizer_kwargs(Tokenizer: Type[LightningIRTokenizer]) Dict[str, Any][source]
Returns the keyword arguments for the tokenizer. This method is used to pass the configuration parameters to the tokenizer.
- Parameters:
Tokenizer (Type[LightningIRTokenizer]) – Class of the tokenizer to be used.
- Returns:
Keyword arguments for the tokenizer.
- Return type:
Dict[str, Any]
- to_dict() Dict[str, Any][source]
Overrides the transformers.PretrainedConfig.to_dict method to include the added arguments and the backbone model type.
- Returns:
Configuration dictionary.
- Return type:
Dict[str, Any]