RankCallback
- class lightning_ir.callbacks.callbacks.RankCallback(save_dir: Path | str | None = None, run_name: str | None = None, overwrite: bool = False)[source]
Bases:
Callback
,_GatherMixin
,_OverwriteMixin
- __init__(save_dir: Path | str | None = None, run_name: str | None = None, overwrite: bool = False) None [source]
Callback to write run file of ranked documents to disk.
- Parameters:
save_dir (Path | str | None, optional) – Directory to save run files to. If None, run files will be saved in the models’ directory, defaults to None
run_name (str | None, optional) – Name of the run file. If None, the dataset’s dataset_id or file name will be used, defaults to None
overwrite (bool, optional) – Whether to skip or overwrite already existing run files, defaults to False
Methods
__init__
([save_dir, run_name, overwrite])Callback to write run file of ranked documents to disk.
on_test_batch_end
(trainer, pl_module, ...[, ...])Hook to aggregate and write ranking to file.
setup
(trainer, pl_module, stage)Hook to setup the callback.
teardown
(trainer, pl_module, stage)Hook to cleanup the callback.
Attributes
- on_test_batch_end(trainer: Trainer, pl_module: LightningIRModule, outputs: LightningIROutput, batch: Any, batch_idx: int, dataloader_idx: int = 0) None [source]
Hook to aggregate and write ranking to file.
- Parameters:
trainer (Trainer) – PyTorch Lightning Trainer
pl_module (LightningIRModule) – LightningIR Module
outputs (LightningIROutput) – Scored query documents pairs
batch (Any) – Batch of input data
batch_idx (int) – Index of batch in the current dataset
dataloader_idx (int, optional) – Index of the dataloader, defaults to 0
- setup(trainer: Trainer, pl_module: LightningIRModule, stage: str) None [source]
Hook to setup the callback.
- Parameters:
trainer (Trainer) – PyTorch Lightning Trainer
pl_module (LightningIRModule) – LightningIR module
stage (str) – Stage of the trainer, must be “test”
- Raises:
ValueError – If the stage is not “test”
ValueError – If no save_dir is provided and model_name_or_path is not a path (the model is not local)
- teardown(trainer: Trainer, pl_module: BiEncoderModule, stage: str) None [source]
Hook to cleanup the callback.
- Parameters:
trainer (Trainer) – PyTorch Lightning Trainer
pl_module (BiEncoderModule) – LightningIR bi-encoder module used for indexing
stage (str) – Stage of the trainer, must be “test”