ApproxRankMSE
- class lightning_ir.loss.approximate.ApproxRankMSE(temperature: float = 1, discount: 'log2' | 'reciprocal' | None = None)[source]
Bases:
ApproxLossFunctionApproximate Rank Mean Squared Error (RankMSE) loss function for ranking tasks. Originally proposed in: Rank-DistiLLM: Closing the Effectiveness Gap Between Cross-Encoders and LLMs for Passage Re-ranking
- __init__(temperature: float = 1, discount: 'log2' | 'reciprocal' | None = None)[source]
Initialize the ApproxRankMSE loss function.
- Parameters:
temperature (float) – Temperature parameter for scaling the scores. Defaults to 1.
discount (Literal["log2", "reciprocal"] | None) – Discounting strategy for the loss. If None, no discounting is applied. Defaults to None.
Methods
__init__([temperature, discount])Initialize the ApproxRankMSE loss function.
compute_loss(output, batch)Compute the ApproxRankMSE loss.
- compute_loss(output: LightningIROutput, batch: TrainBatch) torch.Tensor[source]
Compute the ApproxRankMSE loss.
- Parameters:
output (LightningIROutput) – The output from the model containing scores.
batch (TrainBatch) – The training batch containing targets.
- Returns:
The computed loss.
- Return type:
torch.Tensor