NeuralLossFunction
- class lightning_ir.loss.neural.NeuralLossFunction(temperature: float = 1, tol: float = 1e-05, max_iter: int = 50)[source]
Bases:
ListwiseLossFunctionBase class for neural loss functions that compute ranks from scores using neural sorting.
- __init__(temperature: float = 1, tol: float = 1e-05, max_iter: int = 50) None[source]
Initialize the NeuralLossFunction.
- Parameters:
temperature (float) – Temperature parameter for scaling the scores. Defaults to 1.
tol (float) – Tolerance for convergence. Defaults to 1e-5.
max_iter (int) – Maximum number of iterations for convergence. Defaults to 50.
Methods
__init__([temperature, tol, max_iter])Initialize the NeuralLossFunction.
get_sorted_targets(scores, targets)Get the sorted targets based on the neural sort permutation matrix.
neural_sort(scores)Compute the neural sort permutation matrix from scores.
sinkhorn_scaling(mat)Apply Sinkhorn scaling to the permutation matrix.
- get_sorted_targets(scores: Tensor, targets: Tensor) Tensor[source]
Get the sorted targets based on the neural sort permutation matrix.
- Parameters:
scores (torch.Tensor) – The input scores tensor.
targets (torch.Tensor) – The targets tensor.
- Returns:
The sorted targets tensor.
- Return type:
torch.Tensor
- neural_sort(scores: Tensor) Tensor[source]
Compute the neural sort permutation matrix from scores.
- Parameters:
scores (torch.Tensor) – The input scores tensor.
- Returns:
The computed permutation matrix.
- Return type:
torch.Tensor
- sinkhorn_scaling(mat: Tensor) Tensor[source]
Apply Sinkhorn scaling to the permutation matrix.
- Parameters:
mat (torch.Tensor) – The input permutation matrix.
- Returns:
The scaled permutation matrix.
- Return type:
torch.Tensor