L1Regularization
- class lightning_ir.loss.regularization.L1Regularization(query_weight: float = 0.0001, doc_weight: float = 0.0001)[source]
Bases:
RegularizationLossFunctionL1 Regularization loss function for query and document embeddings. Originally proposed in: Regression Shrinkage and Selection via the Lasso
- __init__(query_weight: float = 0.0001, doc_weight: float = 0.0001) None
Initialize the RegularizationLossFunction.
- Parameters:
query_weight (float) – Weight for the query embeddings regularization. Defaults to 1e-4.
doc_weight (float) – Weight for the document embeddings regularization. Defaults to 1e-4.
Methods
compute_loss(output)Compute the L1 regularization loss.
- compute_loss(output: BiEncoderOutput) torch.Tensor[source]
Compute the L1 regularization loss.
- Parameters:
output (BiEncoderOutput) – The output from the model containing query and document embeddings.
- Returns:
The computed loss.
- Return type:
torch.Tensor
- process_embeddings(output: BiEncoderOutput) Tuple[torch.Tensor, torch.Tensor]
Process the embeddings from the output.
- Parameters:
output (BiEncoderOutput) – The output from the model containing query and document embeddings.
- Returns:
The processed query and document embeddings.
- Return type:
Tuple[torch.Tensor, torch.Tensor]
- Raises:
ValueError – If query_embeddings are not present in the output.
ValueError – If doc_embeddings are not present in the output.
- process_scores(output: LightningIROutput) torch.Tensor
Process the scores from the output.
- Parameters:
output (LightningIROutput) – The output from the model.
- Returns:
The scores tensor.
- Return type:
torch.Tensor
- process_targets(scores: torch.Tensor, batch: TrainBatch) torch.Tensor
Process the targets from the batch.
- Parameters:
scores (torch.Tensor) – The scores tensor.
batch (TrainBatch) – The training batch.
- Returns:
The processed targets tensor.
- Return type:
torch.Tensor