LightningIRWandbLogger
- class lightning_ir.main.LightningIRWandbLogger(name: str | None = None, save_dir: str | Path = '.', version: str | None = None, offline: bool = False, dir: str | Path | None = None, id: str | None = None, anonymous: bool | None = None, project: str | None = None, log_model: Literal['all'] | bool = False, experiment: Run | RunDisabled | None = None, prefix: str = '', checkpoint_name: str | None = None, **kwargs: Any)[source]
Bases:
WandbLogger
- __init__(name: str | None = None, save_dir: str | Path = '.', version: str | None = None, offline: bool = False, dir: str | Path | None = None, id: str | None = None, anonymous: bool | None = None, project: str | None = None, log_model: Literal['all'] | bool = False, experiment: Run | RunDisabled | None = None, prefix: str = '', checkpoint_name: str | None = None, **kwargs: Any) None
Methods
Attributes
Gets the save directory.
- after_save_checkpoint(checkpoint_callback: ModelCheckpoint) None
Called after model checkpoint callback saves a new checkpoint.
- Parameters:
checkpoint_callback – the model checkpoint callback instance
- static download_artifact(artifact: str, save_dir: str | Path | None = None, artifact_type: str | None = None, use_artifact: bool | None = True) str
Downloads an artifact from the wandb server.
- Parameters:
artifact – The path of the artifact to download.
save_dir – The directory to save the artifact to.
artifact_type – The type of artifact to download.
use_artifact – Whether to add an edge between the artifact graph.
- Returns:
The path to the downloaded artifact.
- property experiment: Run | RunDisabled
Actual wandb object. To use wandb features in your
LightningModule
do the following.Example:
.. code-block:: python
self.logger.experiment.some_wandb_function()
- finalize(status: str) None
Do any processing that is necessary to finalize an experiment.
- Parameters:
status – Status that the experiment finished with (e.g. success, failed, aborted)
- property group_separator: str
Return the default separator used by the logger to group the data into subfolders.
- log_audio(key: str, audios: list[Any], step: int | None = None, **kwargs: Any) None
Log audios (numpy arrays, or file paths).
- Parameters:
key – The key to be used for logging the audio files
audios – The list of audio file paths, or numpy arrays to be logged
step – The step number to be used for logging the audio files
**kwargs – Optional kwargs are lists passed to each
Wandb.Audio
instance (ex: caption, sample_rate).
Optional kwargs are lists passed to each audio (ex: caption, sample_rate).
- property log_dir: str | None
Return directory the current version of the experiment gets saved, or None if the logger does not save data locally.
- log_graph(model: Module, input_array: Tensor | None = None) None
Record model graph.
- Parameters:
model – the model with an implementation of
forward
.input_array – input passes to model.forward
- log_hyperparams(params: dict[str, Any] | Namespace) None
Record hyperparameters.
- Parameters:
params –
Namespace
or Dict containing the hyperparametersargs – Optional positional arguments, depends on the specific logger being used
kwargs – Optional keyword arguments, depends on the specific logger being used
- log_image(key: str, images: list[Any], step: int | None = None, **kwargs: Any) None
Log images (tensors, numpy arrays, PIL Images or file paths).
Optional kwargs are lists passed to each image (ex: caption, masks, boxes).
- log_metrics(metrics: Mapping[str, float], step: int | None = None) None
Records metrics. This method logs metrics as soon as it received them.
- Parameters:
metrics – Dictionary with metric names as keys and measured quantities as values
step – Step number at which the metrics should be recorded
- log_table(key: str, columns: list[str] | None = None, data: list[list[Any]] | None = None, dataframe: Any = None, step: int | None = None) None
Log a Table containing any object type (text, image, audio, video, molecule, html, etc).
Can be defined either with columns and data or with dataframe.
- log_text(key: str, columns: list[str] | None = None, data: list[list[str]] | None = None, dataframe: Any = None, step: int | None = None) None
Log text as a Table.
Can be defined either with columns and data or with dataframe.
- log_video(key: str, videos: list[Any], step: int | None = None, **kwargs: Any) None
Log videos (numpy arrays, or file paths).
- Parameters:
key – The key to be used for logging the video files
videos – The list of video file paths, or numpy arrays to be logged
step – The step number to be used for logging the video files
**kwargs – Optional kwargs are lists passed to each Wandb.Video instance (ex: caption, fps, format).
Optional kwargs are lists passed to each video (ex: caption, fps, format).
- property name: str | None
The project name of this experiment.
- Returns:
The name of the project the current experiment belongs to. This name is not the same as wandb.Run’s name. To access wandb’s internal experiment name, use
logger.experiment.name
instead.
- property root_dir: str | None
Return the root directory where all versions of an experiment get saved, or None if the logger does not save data locally.