CoilModel
- class lightning_ir.models.bi_encoders.coil.CoilModel(config: CoilConfig, *args, **kwargs)[source]
Bases:
MultiVectorBiEncoderModelMulti-vector COIL model. See
CoilConfigfor configuration options.- __init__(config: CoilConfig, *args, **kwargs) None[source]
Initializes a COIL model given a
CoilConfigconfiguration.- Parameters:
config (CoilConfig) – Configuration for the COIL model.
Methods
__init__(config, *args, **kwargs)Initializes a COIL model given a
CoilConfigconfiguration.encode(encoding, input_type)Encodes a batched tokenized text sequences and returns the embeddings and scoring mask.
score(output[, num_docs])Compute relevance scores between queries and documents.
Attributes
training- config_class
Configuration class for COIL models.
alias of
CoilConfig
- encode(encoding: BatchEncoding, input_type: 'query' | 'doc') CoilEmbedding[source]
Encodes a batched tokenized text sequences and returns the embeddings and scoring mask.
- Parameters:
encoding (BatchEncoding) – Tokenizer encodings for the text sequence.
input_type (Literal["query", "doc"]) – Type of input, either “query” or “doc”.
- Returns:
Embeddings and scoring mask.
- Return type:
- score(output: CoilOutput, num_docs: Sequence[int] | int | None = None) CoilOutput[source]
Compute relevance scores between queries and documents.
- Parameters:
query_embeddings (CoilEmbedding) – CLS embeddings, token embeddings, and scoring mask for the queries.
doc_embeddings (CoilEmbedding) – CLS embeddings, token embeddings, and scoring mask for the documents.
num_docs (Sequence[int] | int | None) – Specifies how many documents are passed per query. If a sequence of integers, len(num_doc) should be equal to the number of queries and sum(num_docs) equal to the number of documents, i.e., the sequence contains one value per query specifying the number of documents for that query. If an integer, assumes an equal number of documents per query. If None, tries to infer the number of documents by dividing the number of documents by the number of queries. Defaults to None.
- Returns:
Relevance scores.
- Return type:
torch.Tensor