UniCoilConfig
- class lightning_ir.models.bi_encoders.coil.UniCoilConfig(query_length: int | None = 32, doc_length: int | None = 512, similarity_function: 'cosine' | 'dot' = 'dot', projection: 'linear' | 'linear_no_bias' = 'linear', **kwargs)[source]
Bases:
SingleVectorBiEncoderConfigConfiguration class for UniCOIL models.
- __init__(query_length: int | None = 32, doc_length: int | None = 512, similarity_function: 'cosine' | 'dot' = 'dot', projection: 'linear' | 'linear_no_bias' = 'linear', **kwargs) None[source]
A UniCOIL model encodes queries and documents separately, and computes a similarity score using the maximum similarity of token embeddings between query and document.
- Parameters:
query_length (int | None) – Maximum query length in number of tokens. Defaults to 32.
doc_length (int | None) – Maximum document length in number of tokens. Defaults to 512.
similarity_function (Literal["cosine", "dot"]) – Similarity function to compute scores between query and document embeddings. Defaults to “dot”.
projection (Literal["linear", "linear_no_bias"], optional) – Whether and how to project the embeddings. Defaults to “linear”.
Methods
__init__([query_length, doc_length, ...])A UniCOIL model encodes queries and documents separately, and computes a similarity score using the maximum similarity of token embeddings between query and document.
Attributes
embedding_dimModel type for UniCOIL models.