MvrModel
- class lightning_ir.models.mvr.MvrModel(config: MvrConfig, *args, **kwargs)[source]
Bases:
MultiVectorBiEncoderModelMVR model for multi-view representation learning.
- __init__(config: MvrConfig, *args, **kwargs)[source]
Initializes a multi-vector bi-encoder model given a
MultiVectorBiEncoderConfig.- Parameters:
config (MultiVectorBiEncoderConfig) – Configuration for the multi-vector bi-encoder model
- Raises:
ValueError – If mask scoring tokens are specified in the configuration but the tokenizer is not available
ValueError – If the specified mask scoring tokens are not in the tokenizer vocab
Methods
__init__(config, *args, **kwargs)Initializes a multi-vector bi-encoder model given a
MultiVectorBiEncoderConfig.encode(encoding, input_type)Encodes a batched tokenized text sequences and returns the embeddings and scoring mask.
scoring_mask(encoding, input_type)Computes a scoring mask for batched tokenized text sequences which is used in the scoring function to mask out vectors during scoring.
Attributes
training- ALLOW_SUB_BATCHING = True
Flag to allow mini batches of documents for a single query. Set to false for listwise models to ensure correctness.
- aggregate_similarity(similarity: Tensor, query_scoring_mask: Tensor, doc_scoring_mask: Tensor, num_docs: Sequence[int] | int | None = None) Tensor
Aggregates the matrix of query-document similarities into a single score based on the configured aggregation strategy.
- Parameters:
similarity (torch.Tensor) – Query–document similarity matrix.
query_scoring_mask (torch.Tensor) – Which query vectors should be masked out during scoring.
doc_scoring_mask (torch.Tensor) – Which document vectors should be masked out during scoring.
- Returns:
Aggregated similarity scores.
- Return type:
torch.Tensor
- compute_similarity(query_embeddings: BiEncoderEmbedding, doc_embeddings: BiEncoderEmbedding, num_docs: Sequence[int] | int | None = None) Tensor
Computes the similarity score between all query and document embedding vector pairs.
- Parameters:
query_embeddings (BiEncoderEmbedding) – Embeddings of the queries.
doc_embeddings (BiEncoderEmbedding) – Embeddings of the documents.
num_docs (Sequence[int] | int | None) – Specifies how many documents are passed per query. If a sequence of integers, len(num_docs) should be equal to the number of queries and sum(num_docs) equal to the number of documents, i.e., the sequence contains one value per query specifying the number of documents for that query. If an integer, assumes an equal number of documents per query. If None, tries to infer the number of documents by dividing the number of documents by the number of queries. Defaults to None.
- Returns:
Similarity scores between all query and document embedding vector pairs.
- Return type:
torch.Tensor
- config_class
Configuration class for MVR models.
alias of
MvrConfig
- encode(encoding: BatchEncoding, input_type: Literal['query', 'doc']) BiEncoderEmbedding[source]
Encodes a batched tokenized text sequences and returns the embeddings and scoring mask.
- Parameters:
encoding (BatchEncoding) – Tokenizer encodings for the text sequence.
input_type (Literal["query", "doc"]) – Type of input, either “query” or “doc”.
- Returns:
Embeddings and scoring mask.
- Return type:
- encode_doc(encoding: BatchEncoding) BiEncoderEmbedding
Encodes tokenized documents.
- Parameters:
encoding (BatchEncoding) – Tokenizer encodings for the documents.
- Returns:
Document embeddings and scoring mask.
- Return type:
- encode_query(encoding: BatchEncoding) BiEncoderEmbedding
Encodes tokenized queries.
- Parameters:
encoding (BatchEncoding) – Tokenizer encodings for the queries.
- Returns:
Query embeddings and scoring mask.
- Return type:
- forward(query_encoding: BatchEncoding | None, doc_encoding: BatchEncoding | None, num_docs: Sequence[int] | int | None = None) BiEncoderOutput
Embeds queries and/or documents and computes relevance scores between them if both are provided.
- Parameters:
query_encoding (BatchEncoding | None) – Tokenizer encodings for the queries. Defaults to None.
doc_encoding (BatchEncoding | None) – Tokenizer encodings for the documents. Defaults to None.
num_docs (Sequence[int] | int | None) – Specifies how many documents are passed per query. If a sequence of integers, len(num_doc) should be equal to the number of queries and sum(num_docs) equal to the number of documents, i.e., the sequence contains one value per query specifying the number of documents for that query. If an integer, assumes an equal number of documents per query. If None, tries to infer the number of documents by dividing the number of documents by the number of queries. Defaults to None.
- Returns:
Output of the model containing query and document embeddings and relevance scores.
- Return type:
- classmethod from_pretrained(model_name_or_path: str | Path, *args, **kwargs) Self
- Loads a pretrained model. Wraps the transformers.PreTrainedModel.from_pretrained method to return a
derived LightningIRModel. See
LightningIRModelClassFactoryfor more details.
>>> # Loading using model class and backbone checkpoint >>> type(CrossEncoderModel.from_pretrained("bert-base-uncased")) <class 'lightning_ir.base.class_factory.CrossEncoderBertModel'> >>> # Loading using base class and backbone checkpoint >>> type(LightningIRModel.from_pretrained("bert-base-uncased", config=CrossEncoderConfig())) <class 'lightning_ir.base.class_factory.CrossEncoderBertModel'>- Args:
model_name_or_path (str | Path): Name or path of the pretrained model.
- Raises:
ValueError: If called on the abstract class LightningIRModel and no config is passed.
- Returns:
LightningIRModel: A derived LightningIRModel consisting of a backbone model and a LightningIRModel mixin.
- pooling(embeddings: Tensor, attention_mask: Tensor | None, pooling_strategy: Literal['first', 'mean', 'max', 'sum'] | None) Tensor
Helper method to apply pooling to the embeddings.
- Parameters:
embeddings (torch.Tensor) – Query or document embeddings
attention_mask (torch.Tensor | None) – Query or document attention mask
pooling_strategy (Literal['first', 'mean', 'max', 'sum'] | None) – The pooling strategy. No pooling is applied if None.
- Returns:
(Optionally) pooled embeddings.
- Return type:
torch.Tensor
- Raises:
ValueError – If an unknown pooling strategy is passed.
- score(output: BiEncoderOutput, num_docs: Sequence[int] | int | None = None) BiEncoderOutput
Compute relevance scores between queries and documents.
- Parameters:
output (BiEncoderOutput) – Output containing embeddings and scoring mask.
num_docs (Sequence[int] | int | None) – Specifies how many documents are passed per query. If a sequence of integers, len(num_doc) should be equal to the number of queries and sum(num_docs) equal to the number of documents, i.e., the sequence contains one value per query specifying the number of documents for that query. If an integer, assumes an equal number of documents per query. If None, tries to infer the number of documents by dividing the number of documents by the number of queries. Defaults to None.
- Returns:
Output containing relevance scores.
- Return type:
- Raises:
ValueError – If query or document embeddings are not provided in the output.
ValueError – If scoring masks are not provided for the embeddings.
- scoring_mask(encoding: BatchEncoding, input_type: Literal['query', 'doc']) Tensor[source]
Computes a scoring mask for batched tokenized text sequences which is used in the scoring function to mask out vectors during scoring.
- Parameters:
encoding (BatchEncoding) – Tokenizer encodings for the text sequence.
input_type (Literal["query", "doc"]) – Type of input, either “query” or “doc”.
- Returns:
Scoring mask.
- Return type:
torch.Tensor
- sparsification(embeddings: Tensor, sparsification_strategy: Literal['relu', 'relu_log'] | None = None) Tensor
Helper method to apply sparsification to the embeddings.
- Parameters:
embeddings (torch.Tensor) – Query or document embeddings
sparsification_strategy (Literal['relu', 'relu_log'] | None) – The sparsification strategy. No sparsification is applied if None. Defaults to None.
- Returns:
(Optionally) sparsified embeddings.
- Return type:
torch.Tensor
- Raises:
ValueError – If an unknown sparsification strategy is passed.