TorchDenseSearcher
- class lightning_ir.retrieve.pytorch.dense_searcher.TorchDenseSearcher(index_dir: Path, search_config: TorchDenseSearchConfig, module: BiEncoderModule, use_gpu: bool = True)[source]
Bases:
ExactSearcherTorch-based dense searcher for embeddings.
- __init__(index_dir: Path, search_config: TorchDenseSearchConfig, module: BiEncoderModule, use_gpu: bool = True) None[source]
Initialize the TorchDenseSearcher.
- Parameters:
index_dir (Path) – Directory where the index is stored.
search_config (TorchDenseSearchConfig) – Configuration for the dense search.
module (BiEncoderModule) – Bi-encoder module to use for searching.
use_gpu (bool) – Whether to use GPU for searching. Defaults to True.
Methods
__init__(index_dir, search_config, module[, ...])Initialize the TorchDenseSearcher.
to_gpu()Move the searcher to the GPU if available.
Attributes
- property doc_token_idcs: Tensor
Get the document token indices for scoring.
- Returns:
The document token indices.
- Return type:
torch.Tensor
- search(output: BiEncoderOutput) Tuple[PackedTensor, List[List[str]]]
Search for documents based on the output of the bi-encoder model.
- Parameters:
output (BiEncoderOutput) – The output from the bi-encoder model containing query and document embeddings.
- Returns:
The top-k scores and corresponding document IDs.
- Return type:
Tuple[PackedTensor, List[List[str]]]
- to_gpu() None[source]
Move the searcher to the GPU if available.