Source code for lightning_ir.base.tokenizer

  1"""
  2Tokenizer module for Lightning IR.
  3
  4This module contains the main tokenizer class for the Lightning IR library.
  5"""
  6
  7import json
  8from collections.abc import Sequence
  9from os import PathLike
 10from typing import Self
 11
 12from transformers import TOKENIZER_MAPPING, BatchEncoding, PreTrainedTokenizerBase
 13
 14from .class_factory import LightningIRTokenizerClassFactory
 15from .config import LightningIRConfig
 16from .external_model_hub import CHECKPOINT_MAPPING
 17
 18
[docs] 19class LightningIRTokenizer(PreTrainedTokenizerBase): 20 """Base class for Lightning IR tokenizers. Derived classes implement the tokenize method for handling query 21 and document tokenization. It acts as mixin for a transformers.PreTrainedTokenizer_ backbone tokenizer. 22 23 .. _transformers.PreTrainedTokenizer: \ 24https://huggingface.co/transformers/main_classes/tokenizer.htmltransformers.PreTrainedTokenizer 25 """ 26 27 config_class: type[LightningIRConfig] = LightningIRConfig 28 """Configuration class for the tokenizer.""" 29
[docs] 30 def __init__(self, *args, query_length: int | None = 32, doc_length: int | None = 512, **kwargs): 31 """Initializes the tokenizer. 32 33 Args: 34 query_length (int | None): Maximum number of tokens per query. If None does not truncate. Defaults to 32. 35 doc_length (int | None): Maximum number of tokens per document. If None does not truncate. Defaults to 512. 36 """ 37 super().__init__(*args, query_length=query_length, doc_length=doc_length, **kwargs) 38 self.query_length = query_length 39 self.doc_length = doc_length
40
[docs] 41 def tokenize( 42 self, queries: str | Sequence[str] | None = None, docs: str | Sequence[str] | None = None, **kwargs 43 ) -> dict[str, BatchEncoding]: 44 """Tokenizes queries and documents. 45 46 Args: 47 queries (str | Sequence[str] | None): Queries to tokenize. Defaults to None. 48 docs (str | Sequence[str] | None): Documents to tokenize. Defaults to None. 49 Returns: 50 dict[str, BatchEncoding]: Dictionary containing tokenized queries and documents. 51 Raises: 52 NotImplementedError: Must be implemented by the derived class. 53 """ 54 raise NotImplementedError
55
[docs] 56 @classmethod 57 def from_pretrained(cls, model_name_or_path: str, *args, **kwargs) -> Self: 58 """Loads a pretrained tokenizer. Wraps the transformers.PreTrainedTokenizer.from_pretrained_ method to return a 59 derived LightningIRTokenizer class. See :class:`.LightningIRTokenizerClassFactory` for more details. 60 61 .. _transformers.PreTrainedTokenizer.from_pretrained: \ 62https://huggingface.co/docs/transformers/main_classes/tokenizer.html#transformers.PreTrainedTokenizer.from_pretrained 63 64 .. highlight:: python 65 .. code-block:: python 66 67 >>> Loading using model class and backbone checkpoint 68 >>> type(BiEncoderTokenizer.from_pretrained("bert-base-uncased")) 69 ... 70 <class 'lightning_ir.base.class_factory.BiEncoderBertTokenizerFast'> 71 >>> Loading using base class and backbone checkpoint 72 >>> type(LightningIRTokenizer.from_pretrained("bert-base-uncased", config=BiEncoderConfig())) 73 ... 74 <class 'lightning_ir.base.class_factory.BiEncoderBertTokenizerFast'> 75 76 Args: 77 model_name_or_path (str): Name or path of the pretrained tokenizer. 78 Returns: 79 Self: A derived LightningIRTokenizer consisting of a backbone tokenizer and a LightningIRTokenizer mixin. 80 Raises: 81 ValueError: If called on the abstract class `LightningIRTokenizer` and no config is passed. 82 """ 83 # provides AutoTokenizer.from_pretrained support 84 config = kwargs.get("config", None) 85 if cls is LightningIRTokenizer or all(issubclass(base, LightningIRTokenizer) for base in cls.__bases__): 86 # no backbone models found, create derived lightning-ir tokenizer based on backbone model 87 if config is not None: 88 ConfigClass = config.__class__ 89 elif model_name_or_path in CHECKPOINT_MAPPING: 90 _config = CHECKPOINT_MAPPING[model_name_or_path] 91 ConfigClass = _config.__class__ 92 if config is None: 93 kwargs["config"] = _config 94 elif cls is not LightningIRTokenizer and hasattr(cls, "config_class"): 95 ConfigClass = cls.config_class 96 else: 97 ConfigClass = LightningIRTokenizerClassFactory.get_lightning_ir_config(model_name_or_path) 98 if ConfigClass is None: 99 raise ValueError("Pass a config to `from_pretrained`.") 100 ConfigClass = getattr(ConfigClass, "mixin_config", ConfigClass) 101 backbone_config = LightningIRTokenizerClassFactory.get_backbone_config(model_name_or_path) 102 BackboneTokenizers = TOKENIZER_MAPPING[type(backbone_config)] 103 if kwargs.get("use_fast", True): 104 BackboneTokenizer = BackboneTokenizers[1] 105 else: 106 BackboneTokenizer = BackboneTokenizers[0] 107 cls = LightningIRTokenizerClassFactory(ConfigClass).from_backbone_class(BackboneTokenizer) 108 return cls.from_pretrained(model_name_or_path, *args, **kwargs) 109 config = kwargs.pop("config", None) 110 if config is not None: 111 kwargs.update(config.get_tokenizer_kwargs(cls)) 112 return super().from_pretrained(model_name_or_path, *args, **kwargs)
113 114 def _save_pretrained( 115 self, 116 save_directory: str | PathLike, 117 file_names: tuple[str], 118 legacy_format: bool | None = None, 119 filename_prefix: str | None = None, 120 ) -> tuple[str]: 121 # bit of a hack to change the tokenizer class in the stored tokenizer config to only contain the 122 # lightning_ir tokenizer class (removing the backbone tokenizer class) 123 save_files = super()._save_pretrained(save_directory, file_names, legacy_format, filename_prefix) 124 config_file = save_files[0] 125 with open(config_file) as file: 126 tokenizer_config = json.load(file) 127 128 tokenizer_class = None 129 backbone_tokenizer_class = None 130 for base in self.__class__.__bases__: 131 if issubclass(base, LightningIRTokenizer): 132 if tokenizer_class is not None: 133 raise ValueError("Multiple Lightning IR tokenizer classes found.") 134 tokenizer_class = base.__name__ 135 continue 136 if issubclass(base, PreTrainedTokenizerBase): 137 backbone_tokenizer_class = base.__name__ 138 139 tokenizer_config["tokenizer_class"] = tokenizer_class 140 tokenizer_config["backbone_tokenizer_class"] = backbone_tokenizer_class 141 142 with open(config_file, "w") as file: 143 out_str = json.dumps(tokenizer_config, indent=2, sort_keys=True, ensure_ascii=False) + "\n" 144 file.write(out_str) 145 return save_files