1"""
2Module module for bi-encoder models.
3
4This module defines the Lightning IR module class used to implement bi-encoder models.
5"""
6
7from __future__ import annotations
8
9from pathlib import Path
10from typing import TYPE_CHECKING, Any, List, Mapping, Sequence, Tuple, Type
11
12import torch
13from transformers import BatchEncoding, PreTrainedModel
14
15from ..base import LightningIRModule, LightningIROutput
16from ..data import IndexBatch, RankBatch, SearchBatch, TrainBatch
17from ..loss.base import EmbeddingLossFunction, LossFunction, ScoringLossFunction
18from ..loss.in_batch import InBatchLossFunction
19from .bi_encoder_config import BiEncoderConfig
20from .bi_encoder_model import BiEncoderEmbedding, BiEncoderModel, BiEncoderOutput
21from .bi_encoder_tokenizer import BiEncoderTokenizer
22
23if TYPE_CHECKING:
24 from ..retrieve import SearchConfig, Searcher
25
26
[docs]
27class BiEncoderModule(LightningIRModule):
[docs]
28 def __init__(
29 self,
30 model_name_or_path: str | None = None,
31 config: BiEncoderConfig | None = None,
32 model: BiEncoderModel | None = None,
33 BackboneModel: Type[PreTrainedModel] | None = None,
34 loss_functions: Sequence[LossFunction | Tuple[LossFunction, float]] | None = None,
35 evaluation_metrics: Sequence[str] | None = None,
36 index_dir: Path | None = None,
37 search_config: SearchConfig | None = None,
38 model_kwargs: Mapping[str, Any] | None = None,
39 ):
40 """:class:`.LightningIRModule` for bi-encoder models. It contains a :class:`.BiEncoderModel` and a
41 :class:`.BiEncoderTokenizer` and implements the training, validation, and testing steps for the model.
42
43 .. _ir-measures: https://ir-measur.es/en/latest/index.html
44
45 Args:
46 model_name_or_path (str | None): Name or path of backbone model or fine-tuned Lightning IR model.
47 Defaults to None.
48 config (BiEncoderConfig | None): BiEncoderConfig to apply when loading from backbone model.
49 Defaults to None.
50 model (BiEncoderModel | None): Already instantiated BiEncoderModel. Defaults to None.
51 BackboneModel (Type[PreTrainedModel] | None): Huggingface PreTrainedModel class to use as backbone
52 instead of the default AutoModel. Defaults to None.
53 loss_functions (Sequence[LossFunction | Tuple[LossFunction, float]] | None):
54 Loss functions to apply during fine-tuning, optional loss weights can be provided per loss function
55 Defaults to None.
56 evaluation_metrics (Sequence[str] | None): Metrics corresponding to ir-measures_ measure strings
57 to apply during validation or testing. Defaults to None.
58 index_dir (Path | None): Path to an index used for retrieval. Defaults to None.
59 search_config (SearchConfig | None): Configuration to use during retrieval. Defaults to None.
60 model_kwargs (Mapping[str, Any] | None): Additional keyword arguments to pass to `from_pretrained`
61 when loading a model. Defaults to None.
62 """
63 super().__init__(
64 model_name_or_path=model_name_or_path,
65 config=config,
66 model=model,
67 BackboneModel=BackboneModel,
68 loss_functions=loss_functions,
69 evaluation_metrics=evaluation_metrics,
70 model_kwargs=model_kwargs,
71 )
72 self.model: BiEncoderModel
73 self.config: BiEncoderConfig
74 self.tokenizer: BiEncoderTokenizer
75 if len(self.tokenizer) > self.config.vocab_size:
76 self.model.resize_token_embeddings(len(self.tokenizer), 8)
77 self._searcher = None
78 self.search_config = search_config
79 self.index_dir = index_dir
80
81 @property
82 def searcher(self) -> Searcher | None:
83 """Searcher used for retrieval if `index_dir` and `search_config` are set.
84
85 Returns:
86 Searcher: Searcher class.
87 """
88 return self._searcher
89
90 @searcher.setter
91 def searcher(self, searcher: Searcher):
92 self._searcher = searcher
93
94 def _init_searcher(self) -> None:
95 if self.search_config is not None and self.index_dir is not None:
96 self.searcher = self.search_config.search_class(self.index_dir, self.search_config, self)
97
[docs]
98 def on_test_start(self) -> None:
99 """Called at the beginning of testing. Initializes the searcher if `index_dir` and `search_config` are set."""
100 self._init_searcher()
101 return super().on_test_start()
102
[docs]
103 def forward(self, batch: RankBatch | IndexBatch | SearchBatch) -> BiEncoderOutput:
104 """Runs a forward pass of the model on a batch of data. The output will vary depending on the type of batch. If
105 the batch is a :class`.RankBatch`, query and document embeddings are computed and the relevance score is the
106 similarity between the two embeddings. If the batch is an :class:`.IndexBatch`, only document embeddings
107 are comuputed. If the batch is a :class:`.SearchBatch`, only query embeddings are computed and
108 the model will additionally retrieve documents if :attr:`.searcher` is set.
109
110 Args:
111 batch (RankBatch | IndexBatch | SearchBatch): Input batch containing queries and/or documents.
112 Returns:
113 BiEncoderOutput: Output of the model.
114 Raises:
115 ValueError: If the input batch contains neither queries nor documents.
116 """
117 queries = getattr(batch, "queries", None)
118 docs = getattr(batch, "docs", None)
119 num_docs = None
120 if isinstance(batch, RankBatch):
121 num_docs = None if docs is None else [len(d) for d in docs]
122 docs = [d for nested in docs for d in nested] if docs is not None else None
123 encodings = self.prepare_input(queries, docs, num_docs)
124
125 if not encodings:
126 raise ValueError("No encodings were generated.")
127 output = self.model.forward(
128 encodings.get("query_encoding", None), encodings.get("doc_encoding", None), num_docs
129 )
130 doc_ids = getattr(batch, "doc_ids", None)
131 if doc_ids is not None and output.doc_embeddings is not None:
132 output.doc_embeddings.ids = doc_ids
133 query_ids = getattr(batch, "query_ids", None)
134 if query_ids is not None and output.query_embeddings is not None:
135 output.query_embeddings.ids = query_ids
136 if isinstance(batch, SearchBatch) and self.searcher is not None:
137 scores, doc_ids = self.searcher.search(output)
138 output.scores = scores
139 if output.doc_embeddings is not None:
140 output.doc_embeddings.ids = [doc_id for _doc_ids in doc_ids for doc_id in _doc_ids]
141 batch.doc_ids = doc_ids
142 return output
143
[docs]
144 def score(self, queries: Sequence[str] | str, docs: Sequence[Sequence[str]] | Sequence[str]) -> BiEncoderOutput:
145 """Computes relevance scores for queries and documents.
146
147 Args:
148 queries (Sequence[str] | str): Queries to score.
149 docs (Sequence[Sequence[str]] | Sequence[str]): Documents to score.
150 Returns:
151 BiEncoderOutput: Output of the model.
152 """
153 return super().score(queries, docs)
154
155 def _compute_losses(self, batch: TrainBatch, output: BiEncoderOutput) -> List[torch.Tensor]:
156 """Computes the losses for a training batch."""
157 if self.loss_functions is None:
158 raise ValueError("Loss function is not set")
159
160 if (
161 batch.targets is None
162 or output.query_embeddings is None
163 or output.doc_embeddings is None
164 or output.scores is None
165 ):
166 raise ValueError(
167 "targets, scores, query_embeddings, and doc_embeddings must be set in " "the output and batch"
168 )
169
170 num_queries = len(batch.queries)
171 output.scores = output.scores.view(num_queries, -1)
172 batch.targets = batch.targets.view(*output.scores.shape, -1)
173 losses = []
174 for loss_function, _ in self.loss_functions:
175 if isinstance(loss_function, InBatchLossFunction):
176 pos_idcs, neg_idcs = loss_function.get_ib_idcs(output, batch)
177 ib_doc_embeddings = self._get_ib_doc_embeddings(output.doc_embeddings, pos_idcs, neg_idcs, num_queries)
178 ib_scores = self.model.score(
179 BiEncoderOutput(query_embeddings=output.query_embeddings, doc_embeddings=ib_doc_embeddings)
180 ).scores
181 if ib_scores is None:
182 raise ValueError("In-batch scores cannot be None")
183 ib_scores = ib_scores.view(num_queries, -1)
184 losses.append(loss_function.compute_loss(LightningIROutput(ib_scores)))
185 elif isinstance(loss_function, EmbeddingLossFunction):
186 losses.append(loss_function.compute_loss(output))
187 elif isinstance(loss_function, ScoringLossFunction):
188 losses.append(loss_function.compute_loss(output, batch))
189 else:
190 raise ValueError(f"Unknown loss function type {loss_function.__class__.__name__}")
191 if self.config.sparsification is not None:
192 query_num_nonzero = (
193 torch.nonzero(output.query_embeddings.embeddings).shape[0] / output.query_embeddings.embeddings.shape[0]
194 )
195 doc_num_nonzero = (
196 torch.nonzero(output.doc_embeddings.embeddings).shape[0] / output.doc_embeddings.embeddings.shape[0]
197 )
198 self.log("query_num_nonzero", query_num_nonzero)
199 self.log("doc_num_nonzero", doc_num_nonzero)
200 return losses
201
202 def _get_ib_doc_embeddings(
203 self,
204 embeddings: BiEncoderEmbedding,
205 pos_idcs: torch.Tensor,
206 neg_idcs: torch.Tensor,
207 num_queries: int,
208 ) -> BiEncoderEmbedding:
209 """Gets the in-batch document embeddings for a training batch."""
210 _, num_embs, emb_dim = embeddings.embeddings.shape
211 ib_embeddings = torch.cat(
212 [
213 embeddings.embeddings[pos_idcs].view(num_queries, -1, num_embs, emb_dim),
214 embeddings.embeddings[neg_idcs].view(num_queries, -1, num_embs, emb_dim),
215 ],
216 dim=1,
217 ).view(-1, num_embs, emb_dim)
218 if embeddings.scoring_mask is None:
219 ib_scoring_mask = None
220 else:
221 ib_scoring_mask = torch.cat(
222 [
223 embeddings.scoring_mask[pos_idcs].view(num_queries, -1, num_embs),
224 embeddings.scoring_mask[neg_idcs].view(num_queries, -1, num_embs),
225 ],
226 dim=1,
227 ).view(-1, num_embs)
228 if embeddings.encoding is None:
229 ib_encoding = None
230 else:
231 ib_encoding = {}
232 for key, value in embeddings.encoding.items():
233 seq_len = value.shape[-1]
234 ib_encoding[key] = torch.cat(
235 [value[pos_idcs].view(num_queries, -1, seq_len), value[neg_idcs].view(num_queries, -1, seq_len)],
236 dim=1,
237 ).view(-1, seq_len)
238 ib_encoding = BatchEncoding(ib_encoding)
239 return BiEncoderEmbedding(ib_embeddings, ib_scoring_mask, ib_encoding)
240
[docs]
241 def validation_step(
242 self,
243 batch: TrainBatch | IndexBatch | SearchBatch | RankBatch,
244 batch_idx: int,
245 dataloader_idx: int = 0,
246 ) -> BiEncoderOutput:
247 """Handles the validation step for the model.
248
249 Args:
250 batch (TrainBatch | IndexBatch | SearchBatch | RankBatch): Batch of validation or testing data.
251 batch_idx (int): Index of the batch.
252 dataloader_idx (int | None): Index of the dataloader. Defaults to 0.
253 Returns:
254 BiEncoderOutput: Output of the model.
255 """
256 if isinstance(batch, IndexBatch):
257 return self.forward(batch)
258 if isinstance(batch, (RankBatch, TrainBatch, SearchBatch)):
259 return super().validation_step(batch, batch_idx, dataloader_idx)
260 raise ValueError(f"Unknown batch type {type(batch)}")