Source code for lightning_ir.bi_encoder.bi_encoder_module

  1"""
  2Module module for bi-encoder models.
  3
  4This module defines the Lightning IR module class used to implement bi-encoder models.
  5"""
  6
  7from __future__ import annotations
  8
  9from pathlib import Path
 10from typing import TYPE_CHECKING, Any, List, Mapping, Sequence, Tuple
 11
 12import torch
 13from transformers import BatchEncoding
 14
 15from ..base import LightningIRModule, LightningIROutput
 16from ..data import IndexBatch, RankBatch, SearchBatch, TrainBatch
 17from ..loss.base import EmbeddingLossFunction, LossFunction, ScoringLossFunction
 18from ..loss.in_batch import InBatchLossFunction
 19from .bi_encoder_config import BiEncoderConfig
 20from .bi_encoder_model import BiEncoderEmbedding, BiEncoderModel, BiEncoderOutput
 21from .bi_encoder_tokenizer import BiEncoderTokenizer
 22
 23if TYPE_CHECKING:
 24    from ..retrieve import SearchConfig, Searcher
 25
 26
[docs] 27class BiEncoderModule(LightningIRModule):
[docs] 28 def __init__( 29 self, 30 model_name_or_path: str | None = None, 31 config: BiEncoderConfig | None = None, 32 model: BiEncoderModel | None = None, 33 loss_functions: Sequence[LossFunction | Tuple[LossFunction, float]] | None = None, 34 evaluation_metrics: Sequence[str] | None = None, 35 index_dir: Path | None = None, 36 search_config: SearchConfig | None = None, 37 model_kwargs: Mapping[str, Any] | None = None, 38 ): 39 """:class:`.LightningIRModule` for bi-encoder models. It contains a :class:`.BiEncoderModel` and a 40 :class:`.BiEncoderTokenizer` and implements the training, validation, and testing steps for the model. 41 42 .. _ir-measures: https://ir-measur.es/en/latest/index.html 43 44 Args: 45 model_name_or_path (str | None): Name or path of backbone model or fine-tuned Lightning IR model. 46 Defaults to None. 47 config (BiEncoderConfig | None): BiEncoderConfig to apply when loading from backbone model. 48 Defaults to None. 49 model (BiEncoderModel | None): Already instantiated BiEncoderModel. Defaults to None. 50 loss_functions (Sequence[LossFunction | Tuple[LossFunction, float]] | None): 51 Loss functions to apply during fine-tuning, optional loss weights can be provided per loss function 52 Defaults to None. 53 evaluation_metrics (Sequence[str] | None): Metrics corresponding to ir-measures_ measure strings 54 to apply during validation or testing. Defaults to None. 55 index_dir (Path | None): Path to an index used for retrieval. Defaults to None. 56 search_config (SearchConfig | None): Configuration to use during retrieval. Defaults to None. 57 model_kwargs (Mapping[str, Any] | None): Additional keyword arguments to pass to `from_pretrained` 58 when loading a model. Defaults to None. 59 """ 60 super().__init__(model_name_or_path, config, model, loss_functions, evaluation_metrics, model_kwargs) 61 self.model: BiEncoderModel 62 self.config: BiEncoderConfig 63 self.tokenizer: BiEncoderTokenizer 64 if len(self.tokenizer) > self.config.vocab_size: 65 self.model.resize_token_embeddings(len(self.tokenizer), 8) 66 self._searcher = None 67 self.search_config = search_config 68 self.index_dir = index_dir
69 70 @property 71 def searcher(self) -> Searcher | None: 72 """Searcher used for retrieval if `index_dir` and `search_config` are set. 73 74 Returns: 75 Searcher: Searcher class. 76 """ 77 return self._searcher 78 79 @searcher.setter 80 def searcher(self, searcher: Searcher): 81 self._searcher = searcher 82 83 def _init_searcher(self) -> None: 84 if self.search_config is not None and self.index_dir is not None: 85 self.searcher = self.search_config.search_class(self.index_dir, self.search_config, self) 86
[docs] 87 def on_test_start(self) -> None: 88 """Called at the beginning of testing. Initializes the searcher if `index_dir` and `search_config` are set.""" 89 self._init_searcher() 90 return super().on_test_start()
91
[docs] 92 def forward(self, batch: RankBatch | IndexBatch | SearchBatch) -> BiEncoderOutput: 93 """Runs a forward pass of the model on a batch of data. The output will vary depending on the type of batch. If 94 the batch is a :class`.RankBatch`, query and document embeddings are computed and the relevance score is the 95 similarity between the two embeddings. If the batch is an :class:`.IndexBatch`, only document embeddings 96 are comuputed. If the batch is a :class:`.SearchBatch`, only query embeddings are computed and 97 the model will additionally retrieve documents if :attr:`.searcher` is set. 98 99 Args: 100 batch (RankBatch | IndexBatch | SearchBatch): Input batch containing queries and/or documents. 101 Returns: 102 BiEncoderOutput: Output of the model. 103 Raises: 104 ValueError: If the input batch contains neither queries nor documents. 105 """ 106 queries = getattr(batch, "queries", None) 107 docs = getattr(batch, "docs", None) 108 num_docs = None 109 if isinstance(batch, RankBatch): 110 num_docs = None if docs is None else [len(d) for d in docs] 111 docs = [d for nested in docs for d in nested] if docs is not None else None 112 encodings = self.prepare_input(queries, docs, num_docs) 113 114 if not encodings: 115 raise ValueError("No encodings were generated.") 116 output = self.model.forward( 117 encodings.get("query_encoding", None), encodings.get("doc_encoding", None), num_docs 118 ) 119 doc_ids = getattr(batch, "doc_ids", None) 120 if doc_ids is not None and output.doc_embeddings is not None: 121 output.doc_embeddings.ids = doc_ids 122 query_ids = getattr(batch, "query_ids", None) 123 if query_ids is not None and output.query_embeddings is not None: 124 output.query_embeddings.ids = query_ids 125 if isinstance(batch, SearchBatch) and self.searcher is not None: 126 scores, doc_ids = self.searcher.search(output) 127 output.scores = scores 128 if output.doc_embeddings is not None: 129 output.doc_embeddings.ids = [doc_id for _doc_ids in doc_ids for doc_id in _doc_ids] 130 batch.doc_ids = doc_ids 131 return output
132
[docs] 133 def score(self, queries: Sequence[str] | str, docs: Sequence[Sequence[str]] | Sequence[str]) -> BiEncoderOutput: 134 """Computes relevance scores for queries and documents. 135 136 Args: 137 queries (Sequence[str] | str): Queries to score. 138 docs (Sequence[Sequence[str]] | Sequence[str]): Documents to score. 139 Returns: 140 BiEncoderOutput: Output of the model. 141 """ 142 return super().score(queries, docs)
143 144 def _compute_losses(self, batch: TrainBatch, output: BiEncoderOutput) -> List[torch.Tensor]: 145 """Computes the losses for a training batch.""" 146 if self.loss_functions is None: 147 raise ValueError("Loss function is not set") 148 149 if ( 150 batch.targets is None 151 or output.query_embeddings is None 152 or output.doc_embeddings is None 153 or output.scores is None 154 ): 155 raise ValueError( 156 "targets, scores, query_embeddings, and doc_embeddings must be set in " "the output and batch" 157 ) 158 159 num_queries = len(batch.queries) 160 output.scores = output.scores.view(num_queries, -1) 161 batch.targets = batch.targets.view(*output.scores.shape, -1) 162 losses = [] 163 for loss_function, _ in self.loss_functions: 164 if isinstance(loss_function, InBatchLossFunction): 165 pos_idcs, neg_idcs = loss_function.get_ib_idcs(output, batch) 166 ib_doc_embeddings = self._get_ib_doc_embeddings(output.doc_embeddings, pos_idcs, neg_idcs, num_queries) 167 ib_scores = self.model.score( 168 BiEncoderOutput(query_embeddings=output.query_embeddings, doc_embeddings=ib_doc_embeddings) 169 ).scores 170 if ib_scores is None: 171 raise ValueError("In-batch scores cannot be None") 172 ib_scores = ib_scores.view(num_queries, -1) 173 losses.append(loss_function.compute_loss(LightningIROutput(ib_scores))) 174 elif isinstance(loss_function, EmbeddingLossFunction): 175 losses.append(loss_function.compute_loss(output)) 176 elif isinstance(loss_function, ScoringLossFunction): 177 losses.append(loss_function.compute_loss(output, batch)) 178 else: 179 raise ValueError(f"Unknown loss function type {loss_function.__class__.__name__}") 180 if self.config.sparsification is not None: 181 query_num_nonzero = ( 182 torch.nonzero(output.query_embeddings.embeddings).shape[0] / output.query_embeddings.embeddings.shape[0] 183 ) 184 doc_num_nonzero = ( 185 torch.nonzero(output.doc_embeddings.embeddings).shape[0] / output.doc_embeddings.embeddings.shape[0] 186 ) 187 self.log("query_num_nonzero", query_num_nonzero) 188 self.log("doc_num_nonzero", doc_num_nonzero) 189 return losses 190 191 def _get_ib_doc_embeddings( 192 self, 193 embeddings: BiEncoderEmbedding, 194 pos_idcs: torch.Tensor, 195 neg_idcs: torch.Tensor, 196 num_queries: int, 197 ) -> BiEncoderEmbedding: 198 """Gets the in-batch document embeddings for a training batch.""" 199 _, num_embs, emb_dim = embeddings.embeddings.shape 200 ib_embeddings = torch.cat( 201 [ 202 embeddings.embeddings[pos_idcs].view(num_queries, -1, num_embs, emb_dim), 203 embeddings.embeddings[neg_idcs].view(num_queries, -1, num_embs, emb_dim), 204 ], 205 dim=1, 206 ).view(-1, num_embs, emb_dim) 207 if embeddings.scoring_mask is None: 208 ib_scoring_mask = None 209 else: 210 ib_scoring_mask = torch.cat( 211 [ 212 embeddings.scoring_mask[pos_idcs].view(num_queries, -1, num_embs), 213 embeddings.scoring_mask[neg_idcs].view(num_queries, -1, num_embs), 214 ], 215 dim=1, 216 ).view(-1, num_embs) 217 if embeddings.encoding is None: 218 ib_encoding = None 219 else: 220 ib_encoding = {} 221 for key, value in embeddings.encoding.items(): 222 seq_len = value.shape[-1] 223 ib_encoding[key] = torch.cat( 224 [value[pos_idcs].view(num_queries, -1, seq_len), value[neg_idcs].view(num_queries, -1, seq_len)], 225 dim=1, 226 ).view(-1, seq_len) 227 ib_encoding = BatchEncoding(ib_encoding) 228 return BiEncoderEmbedding(ib_embeddings, ib_scoring_mask, ib_encoding) 229
[docs] 230 def validation_step( 231 self, 232 batch: TrainBatch | IndexBatch | SearchBatch | RankBatch, 233 batch_idx: int, 234 dataloader_idx: int = 0, 235 ) -> BiEncoderOutput: 236 """Handles the validation step for the model. 237 238 Args: 239 batch (TrainBatch | IndexBatch | SearchBatch | RankBatch): Batch of validation or testing data. 240 batch_idx (int): Index of the batch. 241 dataloader_idx (int, optional): Index of the dataloader. Defaults to 0. 242 Returns: 243 BiEncoderOutput: Output of the model. 244 """ 245 if isinstance(batch, IndexBatch): 246 return self.forward(batch) 247 if isinstance(batch, (RankBatch, TrainBatch, SearchBatch)): 248 return super().validation_step(batch, batch_idx, dataloader_idx) 249 raise ValueError(f"Unknown batch type {type(batch)}")