Source code for lightning_ir.cross_encoder.cross_encoder_module
1"""
2Module module for cross-encoder models.
3
4This module defines the Lightning IR module class used to implement cross-encoder models.
5"""
6
7from typing import Any, List, Mapping, Sequence, Tuple, Type
8
9import torch
10from transformers import PreTrainedModel
11
12from ..base.module import LightningIRModule
13from ..data import RankBatch, SearchBatch, TrainBatch
14from ..loss.base import LossFunction, ScoringLossFunction
15from .cross_encoder_config import CrossEncoderConfig
16from .cross_encoder_model import CrossEncoderModel, CrossEncoderOutput
17from .cross_encoder_tokenizer import CrossEncoderTokenizer
18
19
[docs]
20class CrossEncoderModule(LightningIRModule):
[docs]
21 def __init__(
22 self,
23 model_name_or_path: str | None = None,
24 config: CrossEncoderConfig | None = None,
25 model: CrossEncoderModel | None = None,
26 BackboneModel: Type[PreTrainedModel] | None = None,
27 loss_functions: Sequence[LossFunction | Tuple[LossFunction, float]] | None = None,
28 evaluation_metrics: Sequence[str] | None = None,
29 model_kwargs: Mapping[str, Any] | None = None,
30 ):
31 """:class:`.LightningIRModule` for cross-encoder models. It contains a :class:`.CrossEncoderModel` and a
32 :class:`.CrossEncoderTokenizer` and implements the training, validation, and testing steps for the model.
33
34 .. _ir-measures: https://ir-measur.es/en/latest/index.html
35
36 Args:
37 model_name_or_path (str | None): Name or path of backbone model or fine-tuned Lightning IR model.
38 Defaults to None.
39 config (CrossEncoderConfig | None): CrossEncoderConfig to apply when loading from backbone model.
40 Defaults to None.
41 model (CrossEncoderModel | None): Already instantiated CrossEncoderModel. Defaults to None.
42 BackboneModel (Type[PreTrainedModel] | None): Huggingface PreTrainedModel class to use as backbone
43 instead of the default AutoModel. Defaults to None.
44 loss_functions (Sequence[LossFunction | Tuple[LossFunction, float]] | None):
45 Loss functions to apply during fine-tuning, optional loss weights can be provided per loss function.
46 Defaults to None.
47 evaluation_metrics (Sequence[str] | None): Metrics corresponding to ir-measures_ measure strings to apply
48 during validation or testing. Defaults to None.
49 model_kwargs (Mapping[str, Any] | None): Additional keyword arguments to pass to `from_pretrained` when
50 loading a model. Defaults to None.
51 """
52 super().__init__(
53 model_name_or_path=model_name_or_path,
54 config=config,
55 model=model,
56 BackboneModel=BackboneModel,
57 loss_functions=loss_functions,
58 evaluation_metrics=evaluation_metrics,
59 model_kwargs=model_kwargs,
60 )
61 self.model: CrossEncoderModel
62 self.config: CrossEncoderConfig
63 self.tokenizer: CrossEncoderTokenizer
64
[docs]
65 def forward(self, batch: RankBatch | TrainBatch | SearchBatch) -> CrossEncoderOutput:
66 """Runs a forward pass of the model on a batch of data and returns the contextualized embeddings from the
67 backbone model as well as the relevance scores.
68
69 Args:
70 batch (RankBatch | TrainBatch | SearchBatch): Batch of data to run the forward pass on.
71 Returns:
72 CrossEncoderOutput: Output of the model.
73 Raises:
74 ValueError: If the batch is a SearchBatch.
75 """
76 if isinstance(batch, SearchBatch):
77 raise ValueError("Searching is not available for cross-encoders")
78 queries = batch.queries
79 docs = [d for docs in batch.docs for d in docs]
80 num_docs = [len(docs) for docs in batch.docs]
81 encoding = self.prepare_input(queries, docs, num_docs)
82 output = self.model.forward(encoding["encoding"])
83 return output
84
85 def _compute_losses(self, batch: TrainBatch, output: CrossEncoderOutput) -> List[torch.Tensor]:
86 """Computes the losses for a training batch."""
87 if self.loss_functions is None:
88 raise ValueError("loss_functions must be set in the module")
89
90 output.scores = output.scores.view(len(batch.query_ids), -1)
91 batch.targets = batch.targets.view(*output.scores.shape, -1)
92
93 losses = []
94 for loss_function, _ in self.loss_functions:
95 if not isinstance(loss_function, ScoringLossFunction):
96 raise RuntimeError(f"Loss function {loss_function} is not a scoring loss function")
97 losses.append(loss_function.compute_loss(output, batch))
98 return losses