Source code for lightning_ir.cross_encoder.cross_encoder_module
1"""
2Module module for cross-encoder models.
3
4This module defines the Lightning IR module class used to implement cross-encoder models.
5"""
6
7from typing import Any, List, Mapping, Sequence, Tuple
8
9import torch
10
11from ..base.module import LightningIRModule
12from ..data import RankBatch, SearchBatch, TrainBatch
13from ..loss.base import LossFunction, ScoringLossFunction
14from .cross_encoder_config import CrossEncoderConfig
15from .cross_encoder_model import CrossEncoderModel, CrossEncoderOutput
16from .cross_encoder_tokenizer import CrossEncoderTokenizer
17
18
[docs]
19class CrossEncoderModule(LightningIRModule):
[docs]
20 def __init__(
21 self,
22 model_name_or_path: str | None = None,
23 config: CrossEncoderConfig | None = None,
24 model: CrossEncoderModel | None = None,
25 loss_functions: Sequence[LossFunction | Tuple[LossFunction, float]] | None = None,
26 evaluation_metrics: Sequence[str] | None = None,
27 model_kwargs: Mapping[str, Any] | None = None,
28 ):
29 """:class:`.LightningIRModule` for cross-encoder models. It contains a :class:`.CrossEncoderModel` and a
30 :class:`.CrossEncoderTokenizer` and implements the training, validation, and testing steps for the model.
31
32 .. _ir-measures: https://ir-measur.es/en/latest/index.html
33
34 Args:
35 model_name_or_path (str | None): Name or path of backbone model or fine-tuned Lightning IR model.
36 Defaults to None.
37 config (CrossEncoderConfig | None): CrossEncoderConfig to apply when loading from backbone model.
38 Defaults to None.
39 model (CrossEncoderModel | None): Already instantiated CrossEncoderModel. Defaults to None.
40 loss_functions (Sequence[LossFunction | Tuple[LossFunction, float]] | None):
41 Loss functions to apply during fine-tuning, optional loss weights can be provided per loss function.
42 Defaults to None.
43 evaluation_metrics (Sequence[str] | None): Metrics corresponding to ir-measures_ measure strings to apply
44 during validation or testing. Defaults to None.
45 model_kwargs (Mapping[str, Any] | None): Additional keyword arguments to pass to `from_pretrained` when
46 loading a model. Defaults to None.
47 """
48 super().__init__(model_name_or_path, config, model, loss_functions, evaluation_metrics, model_kwargs)
49 self.model: CrossEncoderModel
50 self.config: CrossEncoderConfig
51 self.tokenizer: CrossEncoderTokenizer
52
[docs]
53 def forward(self, batch: RankBatch | TrainBatch | SearchBatch) -> CrossEncoderOutput:
54 """Runs a forward pass of the model on a batch of data and returns the contextualized embeddings from the
55 backbone model as well as the relevance scores.
56
57 Args:
58 batch (RankBatch | TrainBatch | SearchBatch): Batch of data to run the forward pass on.
59 Returns:
60 CrossEncoderOutput: Output of the model.
61 Raises:
62 ValueError: If the batch is a SearchBatch.
63 """
64 if isinstance(batch, SearchBatch):
65 raise ValueError("Searching is not available for cross-encoders")
66 queries = batch.queries
67 docs = [d for docs in batch.docs for d in docs]
68 num_docs = [len(docs) for docs in batch.docs]
69 encoding = self.prepare_input(queries, docs, num_docs)
70 output = self.model.forward(encoding["encoding"])
71 return output
72
73 def _compute_losses(self, batch: TrainBatch, output: CrossEncoderOutput) -> List[torch.Tensor]:
74 """Computes the losses for a training batch."""
75 if self.loss_functions is None:
76 raise ValueError("loss_functions must be set in the module")
77
78 output.scores = output.scores.view(len(batch.query_ids), -1)
79 batch.targets = batch.targets.view(*output.scores.shape, -1)
80
81 losses = []
82 for loss_function, _ in self.loss_functions:
83 if not isinstance(loss_function, ScoringLossFunction):
84 raise RuntimeError(f"Loss function {loss_function} is not a scoring loss function")
85 losses.append(loss_function.compute_loss(output, batch))
86 return losses