1"""
2Module module for cross-encoder models.
3
4This module defines the Lightning IR module class used to implement cross-encoder models.
5"""
6
7from typing import Any, List, Mapping, Sequence, Tuple
8
9import torch
10
11from ..base.module import LightningIRModule
12from ..data import RankBatch, SearchBatch, TrainBatch
13from ..loss.loss import LossFunction, ScoringLossFunction
14from .cross_encoder_config import CrossEncoderConfig
15from .cross_encoder_model import CrossEncoderModel, CrossEncoderOutput
16from .cross_encoder_tokenizer import CrossEncoderTokenizer
17
18
[docs]
19class CrossEncoderModule(LightningIRModule):
[docs]
20 def __init__(
21 self,
22 model_name_or_path: str | None = None,
23 config: CrossEncoderConfig | None = None,
24 model: CrossEncoderModel | None = None,
25 loss_functions: Sequence[LossFunction | Tuple[LossFunction, float]] | None = None,
26 evaluation_metrics: Sequence[str] | None = None,
27 model_kwargs: Mapping[str, Any] | None = None,
28 ):
29 """:class:`.LightningIRModule` for cross-encoder models. It contains a :class:`.CrossEncoderModel` and a
30 :class:`.CrossEncoderTokenizer` and implements the training, validation, and testing steps for the model.
31
32 .. _ir-measures: https://ir-measur.es/en/latest/index.html
33
34 :param model_name_or_path: Name or path of backbone model or fine-tuned Lightning IR model, defaults to None
35 :type model_name_or_path: str | None, optional
36 :param config: CrossEncoderConfig to apply when loading from backbone model, defaults to None
37 :type config: CrossEncoderConfig | None, optional
38 :param model: Already instantiated CrossEncoderModel, defaults to None
39 :type model: CrossEncoderModel | None, optional
40 :param loss_functions: Loss functions to apply during fine-tuning, optional loss weights can be provided per
41 loss function, defaults to None
42 :type loss_functions: Sequence[LossFunction | Tuple[LossFunction, float]] | None, optional
43 :param evaluation_metrics: Metrics corresponding to ir-measures_ measure strings to apply during validation or
44 testing, defaults to None
45 :type evaluation_metrics: Sequence[str] | None, optional
46 :param model_kwargs: Additional keyword arguments to pass to `from_pretrained` when loading a model,
47 defaults to None
48 :type model_kwargs: Mapping[str, Any] | None, optional
49 """
50 super().__init__(model_name_or_path, config, model, loss_functions, evaluation_metrics, model_kwargs)
51 self.model: CrossEncoderModel
52 self.config: CrossEncoderConfig
53 self.tokenizer: CrossEncoderTokenizer
54
[docs]
55 def forward(self, batch: RankBatch | TrainBatch | SearchBatch) -> CrossEncoderOutput:
56 """Runs a forward pass of the model on a batch of data and returns the contextualized embeddings from the
57 backbone model as well as the relevance scores.
58
59 :param batch: Batch of data to run the forward pass on
60 :type batch: RankBatch | TrainBatch | SearchBatch
61 :raises ValueError: If the batch is a SearchBatch
62 :return: Output of the model
63 :rtype: CrossEncoderOutput
64 """
65 if isinstance(batch, SearchBatch):
66 raise ValueError("Searching is not available for cross-encoders")
67 queries = batch.queries
68 docs = [d for docs in batch.docs for d in docs]
69 num_docs = [len(docs) for docs in batch.docs]
70 encoding = self.prepare_input(queries, docs, num_docs)
71 output = self.model.forward(encoding["encoding"])
72 return output
73
74 def _compute_losses(self, batch: TrainBatch, output: CrossEncoderOutput) -> List[torch.Tensor]:
75 """Computes the losses for a training batch."""
76 if self.loss_functions is None:
77 raise ValueError("loss_functions must be set in the module")
78
79 output.scores = output.scores.view(len(batch.query_ids), -1)
80 batch.targets = batch.targets.view(*output.scores.shape, -1)
81
82 losses = []
83 for loss_function, _ in self.loss_functions:
84 if not isinstance(loss_function, ScoringLossFunction):
85 raise RuntimeError(f"Loss function {loss_function} is not a scoring loss function")
86 losses.append(loss_function.compute_loss(output, batch))
87 return losses