Source code for lightning_ir.cross_encoder.cross_encoder_module

 1"""
 2Module module for cross-encoder models.
 3
 4This module defines the Lightning IR module class used to implement cross-encoder models.
 5"""
 6
 7from collections.abc import Mapping, Sequence
 8from typing import Any
 9
10import torch
11from transformers import PreTrainedModel
12
13from ..base.module import LightningIRModule
14from ..data import RankBatch, SearchBatch, TrainBatch
15from ..loss.base import LossFunction, ScoringLossFunction
16from .cross_encoder_config import CrossEncoderConfig
17from .cross_encoder_model import CrossEncoderModel, CrossEncoderOutput
18from .cross_encoder_tokenizer import CrossEncoderTokenizer
19
20
[docs] 21class CrossEncoderModule(LightningIRModule):
[docs] 22 def __init__( 23 self, 24 model_name_or_path: str | None = None, 25 config: CrossEncoderConfig | None = None, 26 model: CrossEncoderModel | None = None, 27 BackboneModel: type[PreTrainedModel] | None = None, 28 loss_functions: Sequence[LossFunction | tuple[LossFunction, float]] | None = None, 29 evaluation_metrics: Sequence[str] | None = None, 30 model_kwargs: Mapping[str, Any] | None = None, 31 ): 32 """:class:`.LightningIRModule` for cross-encoder models. It contains a :class:`.CrossEncoderModel` and a 33 :class:`.CrossEncoderTokenizer` and implements the training, validation, and testing steps for the model. 34 35 .. _ir-measures: https://ir-measur.es/en/latest/index.html 36 37 Args: 38 model_name_or_path (str | None): Name or path of backbone model or fine-tuned Lightning IR model. 39 Defaults to None. 40 config (CrossEncoderConfig | None): CrossEncoderConfig to apply when loading from backbone model. 41 Defaults to None. 42 model (CrossEncoderModel | None): Already instantiated CrossEncoderModel. Defaults to None. 43 BackboneModel (type[PreTrainedModel] | None): Huggingface PreTrainedModel class to use as backbone 44 instead of the default AutoModel. Defaults to None. 45 loss_functions (Sequence[LossFunction | tuple[LossFunction, float]] | None): 46 Loss functions to apply during fine-tuning, optional loss weights can be provided per loss function. 47 Defaults to None. 48 evaluation_metrics (Sequence[str] | None): Metrics corresponding to ir-measures_ measure strings to apply 49 during validation or testing. Defaults to None. 50 model_kwargs (Mapping[str, Any] | None): Additional keyword arguments to pass to `from_pretrained` when 51 loading a model. Defaults to None. 52 """ 53 super().__init__( 54 model_name_or_path=model_name_or_path, 55 config=config, 56 model=model, 57 BackboneModel=BackboneModel, 58 loss_functions=loss_functions, 59 evaluation_metrics=evaluation_metrics, 60 model_kwargs=model_kwargs, 61 ) 62 self.model: CrossEncoderModel 63 self.config: CrossEncoderConfig 64 self.tokenizer: CrossEncoderTokenizer
65
[docs] 66 def forward(self, batch: RankBatch | TrainBatch | SearchBatch) -> CrossEncoderOutput: 67 """Runs a forward pass of the model on a batch of data and returns the contextualized embeddings from the 68 backbone model as well as the relevance scores. 69 70 Args: 71 batch (RankBatch | TrainBatch | SearchBatch): Batch of data to run the forward pass on. 72 Returns: 73 CrossEncoderOutput: Output of the model. 74 Raises: 75 ValueError: If the batch is a SearchBatch. 76 """ 77 if isinstance(batch, SearchBatch): 78 raise ValueError("Searching is not available for cross-encoders") 79 queries = batch.queries 80 docs = [d for docs in batch.docs for d in docs] 81 num_docs = [len(docs) for docs in batch.docs] 82 encoding = self.prepare_input(queries, docs, num_docs) 83 output = self.model.forward(encoding["encoding"]) 84 return output
85 86 def _compute_losses(self, batch: TrainBatch, output: CrossEncoderOutput) -> list[torch.Tensor]: 87 """Computes the losses for a training batch.""" 88 if self.loss_functions is None: 89 raise ValueError("loss_functions must be set in the module") 90 91 output.scores = output.scores.view(len(batch.query_ids), -1) 92 batch.targets = batch.targets.view(*output.scores.shape, -1) 93 94 losses = [] 95 for loss_function, _ in self.loss_functions: 96 if not isinstance(loss_function, ScoringLossFunction): 97 raise RuntimeError(f"Loss function {loss_function} is not a scoring loss function") 98 losses.append(loss_function.compute_loss(output, batch)) 99 return losses