Source code for lightning_ir.retrieve.base.searcher

  1"""Base searcher class and configuration for retrieval tasks."""
  2
  3from __future__ import annotations
  4
  5from abc import ABC, abstractmethod
  6from pathlib import Path
  7from typing import TYPE_CHECKING, Literal
  8
  9import torch
 10
 11from ...bi_encoder.bi_encoder_model import BiEncoderEmbedding, SingleVectorBiEncoderConfig
 12from .packed_tensor import PackedTensor
 13
 14if TYPE_CHECKING:
 15    from ...bi_encoder import BiEncoderModule, BiEncoderOutput
 16
 17
[docs] 18def cat_arange(arange_starts: torch.Tensor, arange_ends: torch.Tensor) -> torch.Tensor: 19 """Concatenates arange tensors into a single tensor. 20 21 Args: 22 arange_starts (torch.Tensor): The start indices of the ranges. 23 arange_ends (torch.Tensor): The end indices of the ranges. 24 Returns: 25 torch.Tensor: A tensor containing the concatenated ranges. 26 """ 27 arange_lengths = arange_ends - arange_starts 28 offsets = torch.cumsum(arange_lengths, dim=0) - arange_lengths - arange_starts 29 return torch.arange(arange_lengths.sum()) - torch.repeat_interleave(offsets, arange_lengths)
30 31
[docs] 32class Searcher(ABC): 33 """Base class for searchers in the Lightning IR framework.""" 34
[docs] 35 def __init__( 36 self, index_dir: Path | str, search_config: SearchConfig, module: BiEncoderModule, use_gpu: bool = True 37 ) -> None: 38 """Initialize the Searcher. 39 40 Args: 41 index_dir (Path | str): The directory containing the index files. 42 search_config (SearchConfig): The configuration for the search. 43 module (BiEncoderModule): The bi-encoder module to use for scoring. 44 use_gpu (bool): Whether to use GPU for computations. Defaults to True. 45 Raises: 46 ValueError: If the document lengths do not match the index. 47 """ 48 super().__init__() 49 self.index_dir = Path(index_dir) 50 self.search_config = search_config 51 self.use_gpu = use_gpu 52 self.module = module 53 self.device = torch.device("cuda") if use_gpu and torch.cuda.is_available() else torch.device("cpu") 54 55 self.doc_ids = (self.index_dir / "doc_ids.txt").read_text().split() 56 self.doc_lengths = torch.load(self.index_dir / "doc_lengths.pt", weights_only=True) 57 58 self.to_gpu() 59 60 self.num_docs = len(self.doc_ids) 61 self.cumulative_doc_lengths = torch.cumsum(self.doc_lengths, dim=0) 62 self.num_embeddings = int(self.cumulative_doc_lengths[-1].item()) 63 64 self.doc_is_single_vector = self.num_docs == self.num_embeddings 65 self.query_is_single_vector = isinstance(module.config, SingleVectorBiEncoderConfig) 66 67 if self.doc_lengths.shape[0] != self.num_docs or self.doc_lengths.sum() != self.num_embeddings: 68 raise ValueError("doc_lengths do not match index")
69
[docs] 70 def to_gpu(self) -> None: 71 """Move the searcher to the GPU if available.""" 72 self.doc_lengths = self.doc_lengths.to(self.device)
73 74 def _filter_and_sort( 75 self, doc_scores: PackedTensor, doc_idcs: PackedTensor, k: int | None = None 76 ) -> tuple[PackedTensor, PackedTensor]: 77 """Filter and sort the document scores and indices. 78 79 Args: 80 doc_scores (PackedTensor): The document scores. 81 doc_idcs (PackedTensor): The document indices. 82 k (int | None): The number of top documents to return. If None, use the configured k from search_config. 83 Defaults to None. 84 Returns: 85 tuple[PackedTensor, PackedTensor]: The filtered and sorted document scores and indices. 86 """ 87 k = k or self.search_config.k 88 per_query_doc_scores = torch.split(doc_scores, doc_scores.lengths) 89 per_query_doc_idcs = torch.split(doc_idcs, doc_idcs.lengths) 90 num_docs = [] 91 new_doc_scores = [] 92 new_doc_idcs = [] 93 for _scores, _idcs in zip(per_query_doc_scores, per_query_doc_idcs): 94 _k = min(k, _scores.shape[0]) 95 top_values, top_idcs = torch.topk(_scores, _k) 96 new_doc_scores.append(top_values) 97 new_doc_idcs.append(_idcs[top_idcs]) 98 num_docs.append(_k) 99 return PackedTensor(torch.cat(new_doc_scores), lengths=num_docs), PackedTensor( 100 torch.cat(new_doc_idcs), lengths=num_docs 101 ) 102
[docs] 103 @abstractmethod 104 def search(self, output: BiEncoderOutput) -> tuple[PackedTensor, list[list[str]]]: 105 """Search for documents based on the output of the bi-encoder model. 106 107 Args: 108 output (BiEncoderOutput): The output from the bi-encoder model containing query and document embeddings. 109 Returns: 110 tuple[PackedTensor, list[list[str]]]: The top-k scores and corresponding document IDs. 111 """ 112 ...
113 114
[docs] 115class ExactSearcher(Searcher): 116 """Searcher that retrieves documents using exact matching of query embeddings.""" 117
[docs] 118 def search(self, output: BiEncoderOutput) -> tuple[PackedTensor, list[list[str]]]: 119 """Search for documents based on the output of the bi-encoder model. 120 121 Args: 122 output (BiEncoderOutput): The output from the bi-encoder model containing query and document embeddings. 123 Returns: 124 tuple[PackedTensor, list[list[str]]]: The top-k scores and corresponding document IDs. 125 """ 126 query_embeddings = output.query_embeddings 127 if query_embeddings is None: 128 raise ValueError("Expected query_embeddings in BiEncoderOutput") 129 query_embeddings = query_embeddings.to(self.device) 130 131 scores = self._score(query_embeddings) 132 133 # aggregate doc token scores 134 if not self.doc_is_single_vector: 135 scores = torch.scatter_reduce( 136 torch.zeros(scores.shape[0], self.num_docs, device=scores.device), 137 1, 138 self.doc_token_idcs[None].long().expand_as(scores), 139 scores, 140 "amax", 141 ) 142 143 # aggregate query token scores 144 if not self.query_is_single_vector: 145 if query_embeddings.scoring_mask is None: 146 raise ValueError("Expected scoring_mask in multi-vector query_embeddings") 147 query_lengths = query_embeddings.scoring_mask.sum(-1) 148 query_token_idcs = torch.arange(query_lengths.shape[0]).to(query_lengths).repeat_interleave(query_lengths) 149 scores = torch.scatter_reduce( 150 torch.zeros(query_lengths.shape[0], self.num_docs, device=scores.device), 151 0, 152 query_token_idcs[:, None].expand_as(scores), 153 scores, 154 self.module.config.query_aggregation_function, 155 ) 156 top_scores, top_idcs = torch.topk(scores, self.search_config.k) 157 doc_ids = [[self.doc_ids[idx] for idx in _doc_idcs] for _doc_idcs in top_idcs.tolist()] 158 return PackedTensor(top_scores.view(-1), lengths=[self.search_config.k] * len(doc_ids)), doc_ids
159 160 @property 161 def doc_token_idcs(self) -> torch.Tensor: 162 """Get the document token indices for scoring. 163 164 Returns: 165 torch.Tensor: The document token indices. 166 """ 167 if not hasattr(self, "_doc_token_idcs"): 168 self._doc_token_idcs = ( 169 torch.arange(self.doc_lengths.shape[0]) 170 .to(device=self.doc_lengths.device) 171 .repeat_interleave(self.doc_lengths) 172 ) 173 return self._doc_token_idcs 174 175 @abstractmethod 176 def _score(self, query_embeddings: BiEncoderEmbedding) -> torch.Tensor: ...
177 178
[docs] 179class ApproximateSearcher(Searcher):
[docs] 180 def search(self, output: BiEncoderOutput) -> tuple[PackedTensor, list[list[str]]]: 181 """Search for documents based on the output of the bi-encoder model. 182 183 Args: 184 output (BiEncoderOutput): The output from the bi-encoder model containing query and document embeddings. 185 Returns: 186 tuple[PackedTensor, list[list[str]]]: The top-k scores and corresponding document IDs. 187 """ 188 query_embeddings = output.query_embeddings 189 if query_embeddings is None: 190 raise ValueError("Expected query_embeddings in BiEncoderOutput") 191 query_embeddings = query_embeddings.to(self.device) 192 193 candidate_scores, candidate_idcs = self._candidate_retrieval(query_embeddings) 194 scores, doc_idcs = self._aggregate_doc_scores(candidate_scores, candidate_idcs, query_embeddings) 195 scores = self._aggregate_query_scores(scores, query_embeddings) 196 scores, doc_idcs = self._filter_and_sort(scores, doc_idcs) 197 doc_ids = [ 198 [self.doc_ids[doc_idx] for doc_idx in _doc_ids.tolist()] for _doc_ids in doc_idcs.split(doc_idcs.lengths) 199 ] 200 201 return scores, doc_ids
202 203 def _aggregate_doc_scores( 204 self, candidate_scores: PackedTensor, candidate_idcs: PackedTensor, query_embeddings: BiEncoderEmbedding 205 ) -> tuple[PackedTensor, PackedTensor]: 206 if self.doc_is_single_vector: 207 return candidate_scores, candidate_idcs 208 209 query_lengths = query_embeddings.scoring_mask.sum(-1) 210 num_query_vecs = query_lengths.sum() 211 212 # map vec_idcs to doc_idcs 213 candidate_doc_idcs = torch.searchsorted( 214 self.cumulative_doc_lengths, 215 candidate_idcs.to(self.cumulative_doc_lengths.device), 216 side="right", 217 ) 218 219 # convert candidate_scores `num_query_vecs x candidate_k` to `num_query_doc_pairs x num_query_vecs` 220 # and aggregate the maximum doc_vector score per query_vector 221 max_query_length = query_lengths.max() 222 num_docs_per_query_candidate = torch.tensor(candidate_scores.lengths) 223 224 query_idcs = ( 225 torch.arange(query_lengths.shape[0], device=query_lengths.device) 226 .repeat_interleave(query_lengths) 227 .repeat_interleave(num_docs_per_query_candidate) 228 ) 229 query_vector_idcs = cat_arange(torch.zeros_like(query_lengths), query_lengths).repeat_interleave( 230 num_docs_per_query_candidate 231 ) 232 233 stacked = torch.stack([query_idcs, candidate_doc_idcs]) 234 unique_idcs, ranking_doc_idcs = stacked.unique(return_inverse=True, dim=1) 235 num_docs = unique_idcs[0].bincount() 236 doc_idcs = PackedTensor(unique_idcs[1], lengths=num_docs.tolist()) 237 total_num_docs = num_docs.sum() 238 239 unpacked_scores = torch.full((total_num_docs * max_query_length,), float("nan"), device=query_lengths.device) 240 index = ranking_doc_idcs * max_query_length + query_vector_idcs 241 unpacked_scores = torch.scatter_reduce( 242 unpacked_scores, 0, index, candidate_scores, "max", include_self=False 243 ).view(total_num_docs, max_query_length) 244 245 # impute the missing values 246 if self.search_config.imputation_strategy == "gather": 247 # reconstruct the doc embeddings and re-compute the scores 248 imputation_values = torch.empty_like(unpacked_scores) 249 doc_embeddings = self._reconstruct_doc_embeddings(doc_idcs) 250 similarity = self.module.model.compute_similarity(query_embeddings, doc_embeddings, doc_idcs.lengths) 251 unpacked_scores = self.module.model._aggregate( 252 similarity, doc_embeddings.scoring_mask, "max", dim=-1 253 ).squeeze(-1) 254 elif self.search_config.imputation_strategy == "min": 255 per_query_vec_min = torch.scatter_reduce( 256 torch.empty(num_query_vecs), 257 0, 258 torch.arange(query_lengths.sum()).repeat_interleave(num_docs_per_query_candidate), 259 candidate_scores, 260 "min", 261 include_self=False, 262 ) 263 imputation_values = torch.nn.utils.rnn.pad_sequence( 264 per_query_vec_min.split(query_lengths.tolist()), batch_first=True 265 ).repeat_interleave(num_docs, dim=0) 266 elif self.search_config.imputation_strategy == "zero": 267 imputation_values = torch.zeros_like(unpacked_scores) 268 else: 269 raise ValueError(f"Invalid imputation strategy: {self.search_config.imputation_strategy}") 270 271 is_nan = torch.isnan(unpacked_scores) 272 unpacked_scores[is_nan] = imputation_values[is_nan] 273 274 return PackedTensor(unpacked_scores, lengths=num_docs.tolist()), doc_idcs 275 276 def _aggregate_query_scores(self, scores: PackedTensor, query_embeddings: BiEncoderEmbedding) -> PackedTensor: 277 if self.query_is_single_vector: 278 return scores 279 query_scoring_mask = query_embeddings.scoring_mask.repeat_interleave(torch.tensor(scores.lengths), dim=0) 280 scores = PackedTensor( 281 self.module.model._aggregate( 282 scores, query_scoring_mask, self.module.config.query_aggregation_function, dim=1 283 ).squeeze(-1), 284 lengths=scores.lengths, 285 ) 286 return scores 287 288 @abstractmethod 289 def _candidate_retrieval(self, query_embeddings: BiEncoderEmbedding) -> tuple[PackedTensor, PackedTensor]: 290 """Retrieves initial candidates using the query embeddings. Returns candidate scores and candidate vector 291 indices of shape `num_query_vecs x candidate_k` (packed). Candidate indices are None if all doc vectors are 292 scored. 293 294 Args: 295 query_embeddings (BiEncoderEmbedding): The query embeddings to use for candidate retrieval. 296 Returns: 297 tuple[PackedTensor, PackedTensor]: The candidate scores and candidate vector indices. 298 """ 299 ... 300 301 @abstractmethod 302 def _gather_doc_embeddings(self, idcs: torch.Tensor) -> torch.Tensor: 303 """Gather document embeddings based on the provided indices. 304 305 Args: 306 idcs (torch.Tensor): The indices of the document embeddings to gather. 307 Returns: 308 torch.Tensor: The gathered document embeddings. 309 """ 310 ... 311 312 def _reconstruct_doc_embeddings(self, doc_idcs: PackedTensor) -> BiEncoderEmbedding: 313 """Reconstruct document embeddings based on the provided document indices. 314 315 Args: 316 doc_idcs (PackedTensor): The packed tensor containing document indices. 317 Returns: 318 BiEncoderEmbedding: The reconstructed document embeddings. 319 """ 320 # unique doc_idcs per query 321 unique_doc_idcs, inverse_idcs = torch.unique(doc_idcs, return_inverse=True) 322 323 # gather all vectors for unique doc_idcs 324 doc_lengths = self.doc_lengths[unique_doc_idcs] 325 start_doc_idcs = self.cumulative_doc_lengths[unique_doc_idcs - 1] 326 start_doc_idcs[unique_doc_idcs == 0] = 0 327 all_doc_idcs = cat_arange(start_doc_idcs, start_doc_idcs + doc_lengths) 328 all_doc_embeddings = self._gather_doc_embeddings(all_doc_idcs) 329 unique_embeddings = torch.nn.utils.rnn.pad_sequence( 330 list(torch.split(all_doc_embeddings, doc_lengths.tolist())), 331 batch_first=True, 332 ).to(inverse_idcs.device) 333 embeddings = unique_embeddings[inverse_idcs] 334 335 # mask out padding 336 doc_lengths = doc_lengths[inverse_idcs] 337 scoring_mask = torch.arange(embeddings.shape[1], device=embeddings.device) < doc_lengths[:, None] 338 doc_embeddings = BiEncoderEmbedding(embeddings=embeddings, scoring_mask=scoring_mask, encoding=None) 339 return doc_embeddings
340 341
[docs] 342class SearchConfig: 343 """Configuration class for searchers in the Lightning IR framework.""" 344 345 search_class: type[Searcher] 346 347 SUPPORTED_MODELS: set[str] 348
[docs] 349 def __init__(self, k: int = 10) -> None: 350 """Initialize the SearchConfig. 351 352 Args: 353 k (int): The number of top documents to retrieve. Defaults to 10. 354 """ 355 self.k = k
356 357
[docs] 358class ExactSearchConfig(SearchConfig): 359 """Configuration class for exact searchers in the Lightning IR framework.""" 360 361 search_class = ExactSearcher
362 363
[docs] 364class ApproximateSearchConfig(SearchConfig): 365 """Configuration class for approximate searchers in the Lightning IR framework.""" 366 367 search_class = ApproximateSearcher 368
[docs] 369 def __init__( 370 self, k: int = 10, candidate_k: int = 100, imputation_strategy: Literal["min", "gather", "zero"] = "gather" 371 ) -> None: 372 """Initialize the ApproximateSearchConfig. 373 374 Args: 375 k (int): The number of top documents to retrieve. Defaults to 10. 376 candidate_k (int): The number of candidate documents to consider for scoring. Defaults to 100. 377 imputation_strategy (Literal["min", "gather", "zero"]): Strategy for imputing missing scores. Defaults to 378 "gather". 379 """ 380 super().__init__(k) 381 self.k = k 382 self.candidate_k = candidate_k 383 self.imputation_strategy = imputation_strategy