LightningIRModel
- class lightning_ir.base.model.LightningIRModel(config: LightningIRConfig, *args, **kwargs)[source]
Bases:
PreTrainedModel
Base class for Lightning IR models. Derived classes implement the forward method for handling query and document embeddings. It acts as mixin for a transformers.PreTrainedModel backbone model.
- __init__(config: LightningIRConfig, *args, **kwargs) None [source]
Initializes the model.
- Parameters:
config (LightningIRConfig) – Configuration class for the model
Methods
__init__
(config, *args, **kwargs)Initializes the model.
forward
(*args, **kwargs)Forward method of the model.
from_pretrained
(model_name_or_path, *args, ...)Loads a pretrained model. Wraps the transformers.PreTrainedModel.from_pretrained method to return a
pooling
(embeddings, attention_mask, ...)Helper method to apply pooling to the embeddings.
sparsification
(embeddings[, ...])Helper method to apply sparsification to the embeddings.
Attributes
Flag to allow mini batches of documents for a single query.
training
- ALLOW_SUB_BATCHING = True
Flag to allow mini batches of documents for a single query. Set to false for listwise models to ensure correctness.
- config_class
Configuration class for the model.
alias of
LightningIRConfig
- forward(*args, **kwargs) LightningIROutput [source]
Forward method of the model. Must be implemented by the derived class.
- classmethod from_pretrained(model_name_or_path: str | Path, *args, **kwargs) Self [source]
- Loads a pretrained model. Wraps the transformers.PreTrainedModel.from_pretrained method to return a
derived LightningIRModel. See
LightningIRModelClassFactory
for more details.
- param model_name_or_path:
Name or path of the pretrained model
- type model_name_or_path:
str | Path
- raises ValueError:
If called on the abstract class
LightningIRModel
and no config is passed- return:
A derived LightningIRModel consisting of a backbone model and a LightningIRModel mixin
- rtype:
LightningIRModel
>>> # Loading using model class and backbone checkpoint >>> type(CrossEncoderModel.from_pretrained("bert-base-uncased")) <class 'lightning_ir.base.class_factory.CrossEncoderBertModel'> >>> # Loading using base class and backbone checkpoint >>> type(LightningIRModel.from_pretrained("bert-base-uncased", config=CrossEncoderConfig())) <class 'lightning_ir.base.class_factory.CrossEncoderBertModel'>
- pooling(embeddings: Tensor, attention_mask: Tensor | None, pooling_strategy: Literal['first', 'mean', 'max', 'sum'] | None) Tensor [source]
Helper method to apply pooling to the embeddings.
- Parameters:
embeddings (torch.Tensor) – Query or document embeddings
attention_mask (torch.Tensor | None) – Query or document attention mask
pooling_strategy (Literal['first', 'mean', 'max', 'sum'] | None) – The pooling strategy. No pooling is applied if None.
- Raises:
ValueError – If an unknown pooling strategy is passed
- Returns:
(Optionally) pooled embeddings
- Return type:
torch.Tensor
- sparsification(embeddings: Tensor, sparsification_strategy: Literal['relu', 'relu_log'] | None = None) Tensor [source]
Helper method to apply sparsification to the embeddings.
- Parameters:
embeddings (torch.Tensor) – Query or document embeddings
sparsification_strategy (Literal['relu', 'relu_log'] | None, optional) – The sparsification strategy. No sparsification is applied if None, defaults to None
- Raises:
ValueError – If an unknown sparsification strategy is passed
- Returns:
(Optionally) sparsified embeddings
- Return type:
torch.Tensor