CoilConfig
- class lightning_ir.models.coil.CoilConfig(query_length: int = 32, doc_length: int = 512, similarity_function: Literal['cosine', 'dot'] = 'dot', normalize: bool = False, add_marker_tokens: bool = False, token_embedding_dim: int = 32, cls_embedding_dim: int = 768, projection: Literal['linear', 'linear_no_bias'] = 'linear', **kwargs)[source]
Bases:
MultiVectorBiEncoderConfigConfiguration class for COIL models.
- __init__(query_length: int = 32, doc_length: int = 512, similarity_function: Literal['cosine', 'dot'] = 'dot', normalize: bool = False, add_marker_tokens: bool = False, token_embedding_dim: int = 32, cls_embedding_dim: int = 768, projection: Literal['linear', 'linear_no_bias'] = 'linear', **kwargs) None[source]
A COIL model encodes queries and documents separately, and computes a similarity score using the maximum similarity …
- Parameters:
query_length (int, optional) – Maximum query length in number of tokens. Defaults to 32.
doc_length (int, optional) – Maximum document length in number of tokens. Defaults to 512.
similarity_function (Literal["cosine", "dot"]) – Similarity function to compute scores between query and document embeddings. Defaults to “dot”.
normalize (bool) – Whether to normalize query and document embeddings. Defaults to False.
add_marker_tokens (bool) – Whether to add extra marker tokens [Q] / [D] to queries / documents. Defaults to False.
token_embedding_dim (int, optional) – The output embedding dimension for tokens. Defaults to 32.
cls_embedding_dim (int, optional) – The output embedding dimension for the [CLS] token. Defaults to 768.
projection (Literal["linear", "linear_no_bias"], optional) – Whether and how to project the embeddings. Defaults to “linear”.
Methods
__init__([query_length, doc_length, ...])A COIL model encodes queries and documents separately, and computes a similarity score using the maximum similarity ...
Attributes
Model type for COIL models.
- backbone_model_type: str | None = None
Backbone model type for the configuration. Set by
LightningIRModelClassFactory().
- classmethod from_pretrained(pretrained_model_name_or_path: str | Path, *args, **kwargs) LightningIRConfig
Loads the configuration from a pretrained model. Wraps the transformers.PretrainedConfig.from_pretrained
- Parameters:
pretrained_model_name_or_path (str | Path) – Pretrained model name or path.
- Returns:
Derived LightningIRConfig class.
- Return type:
- Raises:
ValueError – If pretrained_model_name_or_path is not a Lightning IR model and no
LightningIRConfigis passed.
- get_tokenizer_kwargs(Tokenizer: Type[LightningIRTokenizer]) Dict[str, Any]
Returns the keyword arguments for the tokenizer. This method is used to pass the configuration parameters to the tokenizer.
- Parameters:
Tokenizer (Type[LightningIRTokenizer]) – Class of the tokenizer to be used.
- Returns:
Keyword arguments for the tokenizer.
- Return type:
Dict[str, Any]
- to_dict() Dict[str, Any]
Overrides the transformers.PretrainedConfig.to_dict method to include the added arguments and the backbone model type.
- Returns:
Configuration dictionary.
- Return type:
Dict[str, Any]
- to_diff_dict() dict[str, Any]
Removes all attributes from the configuration that correspond to the default config attributes for better readability, while always retaining the config attribute from the class. Serializes to a Python dictionary.
- Returns:
Dictionary of all the attributes that make up this configuration instance.
- Return type:
dict[str, Any]