MonoConfig
- class lightning_ir.models.mono.MonoConfig(query_length: int = 32, doc_length: int = 512, pooling_strategy: Literal['first', 'mean', 'max', 'sum', 'bert_pool'] = 'first', linear_bias: bool = False, scoring_strategy: Literal['mono', 'rank'] = 'rank', tokenizer_pattern: str | None = None, **kwargs)[source]
Bases:
CrossEncoderConfigConfiguration class for mono cross-encoder models.
- __init__(query_length: int = 32, doc_length: int = 512, pooling_strategy: Literal['first', 'mean', 'max', 'sum', 'bert_pool'] = 'first', linear_bias: bool = False, scoring_strategy: Literal['mono', 'rank'] = 'rank', tokenizer_pattern: str | None = None, **kwargs)[source]
Initialize the configuration for mono cross-encoder models.
- Parameters:
query_length (int) – Maximum query length. Defaults to 32.
doc_length (int) – Maximum document length. Defaults to 512.
pooling_strategy (Literal["first", "mean", "max", "sum", "bert_pool"]) – Pooling strategy for the embeddings. Defaults to “first”.
linear_bias (bool) – Whether to use bias in the final linear layer. Defaults to False.
scoring_strategy (Literal["mono", "rank"]) – Scoring strategy to use. Defaults to “rank”.
tokenizer_pattern (str | None) – Optional pattern for tokenization. Defaults to None.
Methods
__init__([query_length, doc_length, ...])Initialize the configuration for mono cross-encoder models.
Attributes
Model type for mono cross-encoder models.
- backbone_model_type: str | None = None
Backbone model type for the configuration. Set by
LightningIRModelClassFactory().
- classmethod from_pretrained(pretrained_model_name_or_path: str | Path, *args, **kwargs) LightningIRConfig
Loads the configuration from a pretrained model. Wraps the transformers.PretrainedConfig.from_pretrained
- Parameters:
pretrained_model_name_or_path (str | Path) – Pretrained model name or path.
- Returns:
Derived LightningIRConfig class.
- Return type:
- Raises:
ValueError – If pretrained_model_name_or_path is not a Lightning IR model and no
LightningIRConfigis passed.
- get_tokenizer_kwargs(Tokenizer: Type[LightningIRTokenizer]) Dict[str, Any]
Returns the keyword arguments for the tokenizer. This method is used to pass the configuration parameters to the tokenizer.
- Parameters:
Tokenizer (Type[LightningIRTokenizer]) – Class of the tokenizer to be used.
- Returns:
Keyword arguments for the tokenizer.
- Return type:
Dict[str, Any]
- to_dict() Dict[str, Any]
Overrides the transformers.PretrainedConfig.to_dict method to include the added arguments and the backbone model type.
- Returns:
Configuration dictionary.
- Return type:
Dict[str, Any]