MonoModel
- class lightning_ir.models.mono.MonoModel(config: MonoConfig, *args, **kwargs)[source]
Bases:
CrossEncoderModel- __init__(config: MonoConfig, *args, **kwargs)[source]
A cross-encoder model that jointly encodes a query and document(s). The contextualized embeddings are aggragated into a single vector and fed to a linear layer which computes a final relevance score.
- Parameters:
config (MonoConfig) – Configuration for the mono cross-encoder model.
Methods
__init__(config, *args, **kwargs)A cross-encoder model that jointly encodes a query and document(s).
forward(encoding)Computes contextualized embeddings for the joint query-document input sequence and computes a relevance score.
Attributes
training- ALLOW_SUB_BATCHING = True
Flag to allow mini batches of documents for a single query. Set to false for listwise models to ensure correctness.
- config_class
Configuration class for mono cross-encoder models.
alias of
MonoConfig
- forward(encoding: BatchEncoding) CrossEncoderOutput[source]
Computes contextualized embeddings for the joint query-document input sequence and computes a relevance score.
- Parameters:
encoding (BatchEncoding) – Tokenizer encodings for the joint query-document input sequence.
- Returns:
Output of the model.
- Return type:
- classmethod from_pretrained(model_name_or_path: str | Path, *args, **kwargs) Self
- Loads a pretrained model. Wraps the transformers.PreTrainedModel.from_pretrained method to return a
derived LightningIRModel. See
LightningIRModelClassFactoryfor more details.
>>> # Loading using model class and backbone checkpoint >>> type(CrossEncoderModel.from_pretrained("bert-base-uncased")) <class 'lightning_ir.base.class_factory.CrossEncoderBertModel'> >>> # Loading using base class and backbone checkpoint >>> type(LightningIRModel.from_pretrained("bert-base-uncased", config=CrossEncoderConfig())) <class 'lightning_ir.base.class_factory.CrossEncoderBertModel'>- Args:
model_name_or_path (str | Path): Name or path of the pretrained model.
- Raises:
ValueError: If called on the abstract class LightningIRModel and no config is passed.
- Returns:
LightningIRModel: A derived LightningIRModel consisting of a backbone model and a LightningIRModel mixin.
- pooling(embeddings: Tensor, attention_mask: Tensor | None, pooling_strategy: Literal['first', 'mean', 'max', 'sum'] | None) Tensor
Helper method to apply pooling to the embeddings.
- Parameters:
embeddings (torch.Tensor) – Query or document embeddings
attention_mask (torch.Tensor | None) – Query or document attention mask
pooling_strategy (Literal['first', 'mean', 'max', 'sum'] | None) – The pooling strategy. No pooling is applied if None.
- Returns:
(Optionally) pooled embeddings.
- Return type:
torch.Tensor
- Raises:
ValueError – If an unknown pooling strategy is passed.
- sparsification(embeddings: Tensor, sparsification_strategy: Literal['relu', 'relu_log'] | None = None) Tensor
Helper method to apply sparsification to the embeddings.
- Parameters:
embeddings (torch.Tensor) – Query or document embeddings
sparsification_strategy (Literal['relu', 'relu_log'] | None) – The sparsification strategy. No sparsification is applied if None. Defaults to None.
- Returns:
(Optionally) sparsified embeddings.
- Return type:
torch.Tensor
- Raises:
ValueError – If an unknown sparsification strategy is passed.