T5CrossEncoderConfig
- class lightning_ir.models.t5_cross_encoder.T5CrossEncoderConfig(query_length: int = 32, doc_length: int = 512, decoder_strategy: Literal['mono', 'rank'] = 'mono', **kwargs)[source]
Bases:
CrossEncoderConfig
- __init__(query_length: int = 32, doc_length: int = 512, decoder_strategy: Literal['mono', 'rank'] = 'mono', **kwargs) None [source]
Configuration class for a cross-encoder model
- Parameters:
query_length (int, optional) – Maximum query length, defaults to 32
doc_length (int, optional) – Maximum document length, defaults to 512
pooling_strategy (Literal['first', 'mean', 'max', 'sum'], optional) – Pooling strategy to aggregate the contextualized embeddings into a single vector for computing a relevance score, defaults to “first”
linear_bias (bool, optional) – Whether to use a bias in the prediction linear layer, defaults to False
Methods
__init__
([query_length, doc_length, ...])Configuration class for a cross-encoder model
Attributes
Model type for cross-encoder models.
- backbone_model_type: str | None = None
Backbone model type for the configuration. Set by
LightningIRModelClassFactory()
.
- classmethod from_pretrained(pretrained_model_name_or_path: str | Path, *args, **kwargs) LightningIRConfig
Loads the configuration from a pretrained model. Wraps the transformers.PretrainedConfig.from_pretrained
- Parameters:
pretrained_model_name_or_path (str | Path) – Pretrained model name or path
- Raises:
ValueError – If pre_trained_model_name_or_path is not a Lightning IR model and no
LightningIRConfig
is passed- Returns:
Derived LightningIRConfig class
- Return type:
- get_tokenizer_kwargs(Tokenizer: Type[LightningIRTokenizer]) Dict[str, Any]
Returns the keyword arguments for the tokenizer. This method is used to pass the configuration parameters to the tokenizer.
- Parameters:
Tokenizer (Type[LightningIRTokenizer]) – Class of the tokenizer to be used
- Returns:
Keyword arguments for the tokenizer
- Return type:
Dict[str, Any]
- to_dict() Dict[str, Any]
Overrides the transformers.PretrainedConfig.to_dict method to include the added arguments and the backbone model type.
- Returns:
Configuration dictionary
- Return type:
Dict[str, Any]